001     298229
005     20250508113028.0
024 7 _ |a 10.1093/bioadv/vbaf005
|2 doi
024 7 _ |a pmid:39867532
|2 pmid
024 7 _ |a pmc:PMC11769677
|2 pmc
024 7 _ |a altmetric:173354052
|2 altmetric
037 _ _ |a DKFZ-2025-00236
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Saßmannshausen, Zoe
|0 P:(DE-He78)4a30d2e1484f972ad8dffc92a2533f97
|b 0
|e First author
|u dkfz
245 _ _ |a estiMAge: development of a DNA methylation clock to estimate the methylation age of single cells.
260 _ _ |a Oxford
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737988059_29900
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:A130#LA:A130# / DKFZ-ZMBH Alliance
520 _ _ |a Since their introduction about 10 years ago, methylation clocks have provided broad insights into the biological age of different species, tissues, and in the context of several diseases or aging. However, their application to single-cell methylation data remains a major challenge, because of the inherent sparsity of such data, as many CpG sites are not covered. A methylation clock applicable on single-cell level could help to further disentangle the processes that drive the ticking of epigenetic clocks.We have developed estiMAge ('estimation of Methylation Age'), a framework that exploits redundancy in methylation data to substitute missing CpGs of trained methylation clocks in single cells. Using Euclidean distance as a measure of similarity, we determine which CpGs covary with the required CpG sites of an epigenetic clock and can be used as surrogates for clock CpGs not covered in single-cell experiments. estiMAge is thus a tool that can be applied to standard epigenetic clocks built on elastic net regression, to achieve bulk and single-cell resolution. We show that estiMAge can accurately predict the ages of young and old hepatocytes and can be used to generate single-cell versions of publicly available epigenetic clocks.The source code and instructions for usage of estiMAge are available at https://github.com/DivEpigenetics/estiMAge.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Blank, Lisa Marie
|0 P:(DE-He78)2449c4a48168bc01d4117195867caf12
|b 1
700 1 _ |a Solé-Boldo, Llorenç
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lyko, Frank
|0 P:(DE-He78)a8d53a8cdc716390a6cbacdead227143
|b 3
|u dkfz
700 1 _ |a Raddatz, Günter
|0 P:(DE-He78)e712dff472bccab611dd1641f262ea5a
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.1093/bioadv/vbaf005
|g Vol. 5, no. 1, p. vbaf005
|0 PERI:(DE-600)3076075-6
|n 1
|p vbaf005
|t Bioinformatics advances
|v 5
|y 2025
|x 2635-0041
909 C O |o oai:inrepo02.dkfz.de:298229
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)4a30d2e1484f972ad8dffc92a2533f97
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)2449c4a48168bc01d4117195867caf12
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)a8d53a8cdc716390a6cbacdead227143
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)e712dff472bccab611dd1641f262ea5a
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-31T16:07:00Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-31T16:07:00Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-31T16:07:00Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-01-31T16:07:00Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-28
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 2 _ |0 I:(DE-He78)A130-20160331
|k A130
|l A130 Epigenetik
|x 0
920 0 _ |0 I:(DE-He78)A130-20160331
|k A130
|l A130 Epigenetik
|x 0
920 1 _ |0 I:(DE-He78)A130-20160331
|k A130
|l A130 Epigenetik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A130-20160331
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21