001     298341
005     20250129163506.0
024 7 _ |a 10.3791/67593
|2 doi
024 7 _ |a pmid:39868688
|2 pmid
037 _ _ |a DKFZ-2025-00245
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Wang, Changwen
|0 P:(DE-He78)be724b82903aa397737196d8200edb30
|b 0
|e First author
245 _ _ |a Laboratory-Engineered Glioblastoma Organoid Culture and Drug Screening.
260 _ _ |a Cambridge, MA
|c 2025
|b JoVE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738152276_9464
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:A240#LA:A240#
520 _ _ |a Glioblastoma (GBM) is described as a group of highly malignant primary brain tumors and stands as one of the most lethal malignancies. The genetic and cellular characteristics of GBM have been a focal point of ongoing research, revealing that it is a group of heterogeneous diseases with variations in RNA expression, DNA methylation, or cellular composition. Despite the wealth of molecular data available, the lack of transferable pre-clinic models has limited the application of this information to disease classification rather than treatment stratification. Transferring the patients' genetic information into clinical benefits and bridging the gap between detailed descriptions of GBM, genotype-phenotype associations, and treatment advancements remain significant challenges. In this context, we present an advanced human GBM organoid model, the Laboratory Engineered Glioblastoma Organoid (LEGO), and illustrate its use in studying the genotype-phenotype dependencies and screening potential drugs for GBM. Utilizing this model, we have identified lipid metabolism dysregulation as a critical milestone in GBM progression and discovered that the microsomal triglyceride transfer protein inhibitor Lomitapide shows promise as a potential treatment for GBM.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 2 |a Glioblastoma: genetics
|2 MeSH
650 _ 2 |a Glioblastoma: pathology
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Organoids: metabolism
|2 MeSH
650 _ 2 |a Organoids: drug effects
|2 MeSH
650 _ 2 |a Brain Neoplasms: genetics
|2 MeSH
650 _ 2 |a Brain Neoplasms: pathology
|2 MeSH
650 _ 2 |a Drug Screening Assays, Antitumor: methods
|2 MeSH
650 _ 2 |a Drug Evaluation, Preclinical: methods
|2 MeSH
700 1 _ |a Stöffler, Nadja
|0 P:(DE-He78)79d514e9270d1a0c8b17992db50542f1
|b 1
|e First author
|u dkfz
700 1 _ |a Liu, Haikun
|0 P:(DE-He78)76aeb2431f7458c9261e69c5420390c6
|b 2
|e Last author
|u dkfz
773 _ _ |a 10.3791/67593
|g no. 215, p. 67593
|0 PERI:(DE-600)2975343-0
|p e67593
|t JoVE journal
|v 215
|y 2025
|x 1940-087X
909 C O |o oai:inrepo02.dkfz.de:298341
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)be724b82903aa397737196d8200edb30
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)79d514e9270d1a0c8b17992db50542f1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)76aeb2431f7458c9261e69c5420390c6
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JOVE-J VIS EXP : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
920 2 _ |0 I:(DE-He78)A240-20160331
|k A240
|l A240 Molekulare Neurogenetik
|x 0
920 1 _ |0 I:(DE-He78)A240-20160331
|k A240
|l A240 Molekulare Neurogenetik
|x 0
920 0 _ |0 I:(DE-He78)A240-20160331
|k A240
|l A240 Molekulare Neurogenetik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A240-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21