TY - JOUR
AU - Keyl, Julius
AU - Keyl, Philipp
AU - Montavon, Grégoire
AU - Hosch, René
AU - Brehmer, Alexander
AU - Mochmann, Liliana
AU - Jurmeister, Philipp
AU - Dernbach, Gabriel
AU - Kim, Moon
AU - Koitka, Sven
AU - Bauer, Sebastian
AU - Bechrakis, Nikolaos
AU - Forsting, Michael
AU - Führer-Sakel, Dagmar
AU - Glas, Martin
AU - Grünwald, Viktor
AU - Hadaschik, Boris
AU - Haubold, Johannes
AU - Herrmann, Ken
AU - Kasper, Stefan
AU - Kimmig, Rainer
AU - Lang, Stephan
AU - Rassaf, Tienush
AU - Roesch, Alexander
AU - Schadendorf, Dirk
AU - Siveke, Jens
AU - Stuschke, Martin
AU - Sure, Ulrich
AU - Totzeck, Matthias
AU - Welt, Anja
AU - Wiesweg, Marcel
AU - Baba, Hideo A
AU - Nensa, Felix
AU - Egger, Jan
AU - Müller, Klaus-Robert
AU - Schuler, Martin
AU - Klauschen, Frederick
AU - Kleesiek, Jens
TI - Decoding pan-cancer treatment outcomes using multimodal real-world data and explainable artificial intelligence.
JO - Nature cancer
VL - 6
IS - 2
SN - 2662-1347
CY - London
PB - Nature Research
M1 - DKFZ-2025-00258
SP - 307-322
PY - 2025
N1 - 2025 Feb;6(2):307-322
AB - Despite advances in precision oncology, clinical decision-making still relies on limited variables and expert knowledge. To address this limitation, we combined multimodal real-world data and explainable artificial intelligence (xAI) to introduce AI-derived (AID) markers for clinical decision support. We used xAI to decode the outcome of 15,726 patients across 38 solid cancer entities based on 350 markers, including clinical records, image-derived body compositions, and mutational tumor profiles. xAI determined the prognostic contribution of each clinical marker at the patient level and identified 114 key markers that accounted for 90
LB - PUB:(DE-HGF)16
C6 - pmid:39885364
DO - DOI:10.1038/s43018-024-00891-1
UR - https://inrepo02.dkfz.de/record/298360
ER -