000298410 001__ 298410
000298410 005__ 20250410112526.0
000298410 0247_ $$2doi$$a10.1002/marc.202400739
000298410 0247_ $$2pmid$$apmid:39887749
000298410 0247_ $$2ISSN$$a1022-1336
000298410 0247_ $$2ISSN$$a0173-2803
000298410 0247_ $$2ISSN$$a1521-3927
000298410 037__ $$aDKFZ-2025-00266
000298410 041__ $$aEnglish
000298410 082__ $$a540
000298410 1001_ $$aSchiza, Andriana$$b0
000298410 245__ $$aSurfactant-Free Stable Aqueous Shortwave Infrared Amphiphilic π-Conjugated Polymer Nanoparticles.
000298410 260__ $$aWeinheim$$bWiley-VCH$$c2025
000298410 3367_ $$2DRIVER$$aarticle
000298410 3367_ $$2DataCite$$aOutput Types/Journal article
000298410 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1744277080_31992
000298410 3367_ $$2BibTeX$$aARTICLE
000298410 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000298410 3367_ $$00$$2EndNote$$aJournal Article
000298410 500__ $$a2025 Apr;46(6):e2400739
000298410 520__ $$aNovel amphiphilic π-conjugated polymer nanoparticles tailored to efficiently absorb in the near-infrared II (NIR-II) region of the electromagnetic spectrum (>1000 nm) are presented. To achieve this, it is statistically introduced triethylene glycol substituted bithiophene moieties in various contents into a polymer backbone consisting of alternating thiophene and [1,2,5]thiadiazolo[3,4-g]quinoxaline. Through systematic modifications of monomer ratios, four amphiphilic conjugated polymers are produced. The presence of hydrophilic side chain, like triethylene glycol monomethyl ether, enhanced the polymer's concentration in aqueous media of up to 470%, versus the D-A thiophene and [1,2,5]thiadiazolo[3,4-g]quinoxaline hydrophobic analog polymer, enabling the production of surfactant-free conjugated polymer nanoparticles (CPNs) with higher concentrations (20.3 ppm maximum). Subsequently, the impact of this structural fine-tuning on the optical properties of the polymers and their corresponding CPNs are meticulous investigated. In both cases, it is identified the minimum bithiophene content that maintained the absorption spectra above 1000 nm at significantly higher concentrations. So, these findings contribute to the extensive prospects of these materials in multiple fields including biomedical and optoelectronic applications.
000298410 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000298410 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000298410 650_7 $$2Other$$aconjugated polymers
000298410 650_7 $$2Other$$aphotothermal
000298410 650_7 $$2Other$$apolymer nanoparticles
000298410 650_7 $$2Other$$ashortwave infrared
000298410 650_7 $$2Other$$asustainable solvents
000298410 7001_ $$0P:(DE-HGF)0$$aNega, Alkmini$$b1
000298410 7001_ $$0P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDimitrakopoulou-Strauss, Antonia$$b2$$udkfz
000298410 7001_ $$aGregoriou, Vasilis G$$b3
000298410 7001_ $$00000-0002-7783-157X$$aChochos, Christos L$$b4
000298410 773__ $$0PERI:(DE-600)1475027-2$$a10.1002/marc.202400739$$gp. 2400739$$n6$$pe2400739$$tMacromolecular rapid communications$$v46$$x1022-1336$$y2025
000298410 909CO $$ooai:inrepo02.dkfz.de:298410$$pVDB
000298410 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000298410 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000298410 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000298410 9141_ $$y2025
000298410 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-20$$wger
000298410 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-20$$wger
000298410 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000298410 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000298410 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000298410 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
000298410 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
000298410 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
000298410 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000298410 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACROMOL RAPID COMM : 2022$$d2024-12-20
000298410 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
000298410 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
000298410 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-20
000298410 9201_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000298410 980__ $$ajournal
000298410 980__ $$aVDB
000298410 980__ $$aI:(DE-He78)E060-20160331
000298410 980__ $$aUNRESTRICTED