001     298414
005     20250227151544.0
024 7 _ |a 10.1016/j.metabol.2025.156149
|2 doi
024 7 _ |a pmid:39892865
|2 pmid
024 7 _ |a 0026-0495
|2 ISSN
024 7 _ |a 1532-8600
|2 ISSN
037 _ _ |a DKFZ-2025-00270
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Li, Shu
|b 0
245 _ _ |a Combined loss of glyoxalase 1 and aldehyde dehydrogenase 3a1 amplifies dicarbonyl stress, impairs proteasome activity resulting in hyperglycemia and activated retinal angiogenesis.
260 _ _ |a Orlando, Fla.
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1740665708_7454
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2025 Apr;165:156149
520 _ _ |a Any energy consumption results in the generation of highly reactive dicarbonyls and the need to prevent excessive dicarbonyls accumulation through the activity of several interdependent detoxification enzymes. Glyoxalase 1 (GLO1) knockout zebrafish showed only moderately elevated methylglyoxal (MG) levels, but increased Aldehyde Dehydrogenases (ALDH) activity and increased aldh3a1 expression. Elevated levels of 4-hydroxynonenal (4-HNE) but no MG increase were observed in ALDH3A1KO. The question of whether ALDH3A1 prevents MG formation as a compensatory mechanism in the absence of GLO1 remained unclear.To investigate whether ALDH3A1 detoxifies MG as a compensatory mechanism in the absence of GLO1, the GLO1/ALDH3A1 double knockout (DKO) zebrafish was first generated. Various metabolites including advanced glycation end products (AGEs), as well as glucose metabolism and hyaloid vasculature were analyzed in GLO1KO, ALDH3A1KO and GLO1/ALDH3A1DKO zebrafish.In the absence of GLO1 and ALDH3A1, MG-H1 levels were increased. MG-H1 accumulation led to a severe deterioration of proteasome function, resulting in impaired glucose homeostasis and consequently amplified angiogenic activation of the hyaloid and retinal vasculature. Rescue of these pathological processes could be observed by using L-carnosine, and proteasome activator betulinic acid.The present data, together with previous studies, suggest that ALDH3A1 and GLO1 are important detoxification enzymes that prevent the deleterious effects of MG-H1 accumulation on proteasome function, glucose homeostasis and vascular function.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a ALDH3A1
|2 Other
650 _ 7 |a Diabetes
|2 Other
650 _ 7 |a Diabetic retinopathy
|2 Other
650 _ 7 |a Dicarbonyl stress
|2 Other
650 _ 7 |a GLO1
|2 Other
650 _ 7 |a MG-derived hydroimidazolone 1 (MG-H1)
|2 Other
650 _ 7 |a Proteasome dysfunction
|2 Other
650 _ 7 |a Zebrafish
|2 Other
700 1 _ |a Li, Hao
|0 P:(DE-He78)5b422df679d8af3361c421d51f9420ed
|b 1
|u dkfz
700 1 _ |a Bennewitz, Katrin
|b 2
700 1 _ |a Poschet, Gernot
|b 3
700 1 _ |a Buettner, Michael
|b 4
700 1 _ |a Hausser, Ingrid
|b 5
700 1 _ |a Szendroedi, Julia
|b 6
700 1 _ |a Nawroth, Peter Paul
|b 7
700 1 _ |a Kroll, Jens
|b 8
773 _ _ |a 10.1016/j.metabol.2025.156149
|g p. 156149 -
|0 PERI:(DE-600)2049062-8
|p 156149
|t Metabolism
|v 165
|y 2025
|x 0026-0495
909 C O |p VDB
|o oai:inrepo02.dkfz.de:298414
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)5b422df679d8af3361c421d51f9420ed
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b METABOLISM : 2022
|d 2024-12-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b METABOLISM : 2022
|d 2024-12-11
920 1 _ |0 I:(DE-He78)D400-20160331
|k D400
|l Pathologie infektionsbedingter Tumoren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D400-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21