001     298575
005     20250214112420.0
024 7 _ |a 10.1088/1361-6560/adb124
|2 doi
024 7 _ |a pmid:39898433
|2 pmid
024 7 _ |a 0031-9155
|2 ISSN
024 7 _ |a 1361-6560
|2 ISSN
037 _ _ |a DKFZ-2025-00292
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Yawson, Ama Katseena
|0 P:(DE-He78)a53fbc29983d089b1254ac458b60227d
|b 0
|e First author
|u dkfz
245 _ _ |a Enhancing U-Net-based Pseudo-CT generation from MRI using CT-guided bone segmentation for radiation treatment planning in head & neck cancer patients.
260 _ _ |a Bristol
|c 2025
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1739528614_2240
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040#LA:E040# / Phys. Med. Biol. 70 (2025) 045018
520 _ _ |a This study investigates the effects of various training protocols on enhancing the precision of MRI-only Pseudo-CT generation for radiation treatment planning and adaptation in head & neck cancer patients. It specifically tackles the challenge of differentiating bone from air, a limitation that frequently results in substantial deviations in the representation of bony structures on Pseudo-CT images.The study included 25 patients, utilizing pre-treatment MRI-CT image pairs. Five cases were randomly selected for testing, with the remaining 20 used for model training and validation. A 3D U-Net deep learning model was employed, trained on patches of size 643with an overlap of 323. MRI scans were acquired using the Dixon gradient echo (GRE) technique, and various contrasts were explored to improve Pseudo-CT accuracy, including in-phase, water-only, and combined water-only and fat-only images. Additionally, bone extraction from the fat-only image was integrated as an additional channel to better capture bone structures on Pseudo-CTs. The evaluation involved both image quality and dosimetric metrics.The generated Pseudo-CTs were compared with their corresponding registered target CTs. The mean absolute error (MAE) and peak signal-to-noise ratio (PSNR) for the base model using combined water-only and fat-only images were 19.20 ± 5.30 HU and 57.24 ± 1.44 dB, respectively. Following the integration of an additional channel using a CT-guided bone segmentation, the model's performance improved, achieving MAE and PSNR of 18.32 ± 5.51 HU and 57.82 ± 1.31 dB, respectively. The dosimetric assessment confirmed that radiation treatment planning on Pseudo-CT achieved accuracy comparable to conventional CT. The measured results are statistically significant, with ap-value < 0.05.This study demonstrates improved accuracy in bone representation on Pseudo-CTs achieved through a combination of water-only, fat-only and extracted bone images; thus, enhancing feasibility of MRI-based simulation for radiation treatment planning.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Bone Segmentation
|2 Other
650 _ 7 |a Dixon MRI
|2 Other
650 _ 7 |a Head & Neck cancer
|2 Other
650 _ 7 |a MRI-only Radiation Treatment Planning
|2 Other
650 _ 7 |a Pseudo-CT
|2 Other
650 _ 7 |a U-Net
|2 Other
700 1 _ |a Sallem, Habiba
|0 0009-0004-7811-7839
|b 1
700 1 _ |a Seidensaal, Katharina
|b 2
700 1 _ |a Welzel, Thomas
|b 3
700 1 _ |a Klüter, Sebastian
|0 0000-0003-3139-3444
|b 4
700 1 _ |a Paul, Katharina
|0 0009-0000-9290-168X
|b 5
700 1 _ |a Dorsch, Stefan
|b 6
700 1 _ |a Beyer, Cedric
|b 7
700 1 _ |a Debus, Jürgen
|b 8
700 1 _ |a Jäkel, Oliver
|0 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
|b 9
|u dkfz
700 1 _ |a Bauer, Julia
|b 10
700 1 _ |a Giske, Kristina
|0 P:(DE-He78)7b7d3650efd9aeb0aff30e7fbed3ecac
|b 11
|e Last author
|u dkfz
773 _ _ |a 10.1088/1361-6560/adb124
|0 PERI:(DE-600)1473501-5
|p 045018
|t Physics in medicine and biology
|v 70
|y 2025
|x 0031-9155
909 C O |p VDB
|o oai:inrepo02.dkfz.de:298575
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)a53fbc29983d089b1254ac458b60227d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)7b7d3650efd9aeb0aff30e7fbed3ecac
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS MED BIOL : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-27
920 2 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 0 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21