001     298616
005     20250511020420.0
024 7 _ |a 10.1371/journal.ppat.1012914
|2 doi
024 7 _ |a pmid:39919145
|2 pmid
024 7 _ |a pmc:PMC11805377
|2 pmc
024 7 _ |a 1553-7366
|2 ISSN
024 7 _ |a 1553-7374
|2 ISSN
024 7 _ |a altmetric:174459245
|2 altmetric
037 _ _ |a DKFZ-2025-00316
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Avenhaus, Alicia
|0 P:(DE-He78)b99b271e0ad2dea9ba3ebefc35af9a76
|b 0
|e First author
|u dkfz
245 _ _ |a E6AP is essential for the proliferation of HPV-positive cancer cells by preventing senescence.
260 _ _ |a Lawrence, Kan.
|c 2025
|b PLoS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1739198430_13025
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:D365#LA:D365#
520 _ _ |a Oncogenic types of human papillomaviruses (HPVs) are major human carcinogens. The formation of a trimeric complex between the HPV E6 oncoprotein, the cellular ubiquitin ligase E6AP and the p53 tumor suppressor protein leads to proteolytic p53 degradation and plays a central role for HPV-induced cell transformation. We here uncover that E6AP silencing in HPV-positive cancer cells ultimately leads to efficient induction of cellular senescence, revealing that E6AP acts as a potent anti-senescent factor in these cells. Thus, although the downregulation of either E6 or E6AP expression also acts partially pro-apoptotic, HPV-positive cancer cells surviving E6 repression proliferate further, whereas they become irreversibly growth-arrested upon E6AP repression. We moreover show that the senescence induction following E6AP downregulation is mechanistically highly dependent on induction of the p53/p21 axis, other than the known pro-senescent response of HPV-positive cancer cells following combined downregulation of the viral E6 and E7 oncoproteins. Of further note, repression of E6AP allows senescence induction in the presence of the anti-senescent HPV E7 protein. Yet, despite these mechanistic differences, the pathways underlying the pro-senescent effects of E6AP or E6/E7 repression ultimately converge by being both dependent on the cellular pocket proteins pRb and p130. Taken together, our results uncover a hitherto unrecognized and potent anti-senescent function of the E6AP protein in HPV-positive cancer cells, which is essential for their sustained proliferation. Our results further indicate that interfering with E6AP expression or function could result in therapeutically desired effects in HPV-positive cancer cells by efficiently inducing an irreversible growth arrest. Since the critical role of the E6/E6AP/p53 complex for viral transformation is conserved between different oncogenic HPV types, this approach could provide a therapeutic strategy, which is not HPV type-specific.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Oncogene Proteins, Viral
|2 NLM Chemicals
650 _ 7 |a Ubiquitin-Protein Ligases
|0 EC 2.3.2.27
|2 NLM Chemicals
650 _ 7 |a UBE3A protein, human
|0 EC 2.3.2.26
|2 NLM Chemicals
650 _ 7 |a Tumor Suppressor Protein p53
|2 NLM Chemicals
650 _ 7 |a Repressor Proteins
|2 NLM Chemicals
650 _ 7 |a Papillomavirus E7 Proteins
|2 NLM Chemicals
650 _ 7 |a E6 protein, Human papillomavirus type 16
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Cellular Senescence: physiology
|2 MeSH
650 _ 2 |a Oncogene Proteins, Viral: metabolism
|2 MeSH
650 _ 2 |a Oncogene Proteins, Viral: genetics
|2 MeSH
650 _ 2 |a Ubiquitin-Protein Ligases: metabolism
|2 MeSH
650 _ 2 |a Ubiquitin-Protein Ligases: genetics
|2 MeSH
650 _ 2 |a Tumor Suppressor Protein p53: metabolism
|2 MeSH
650 _ 2 |a Papillomavirus Infections: virology
|2 MeSH
650 _ 2 |a Papillomavirus Infections: metabolism
|2 MeSH
650 _ 2 |a Cell Proliferation
|2 MeSH
650 _ 2 |a Repressor Proteins: metabolism
|2 MeSH
650 _ 2 |a Repressor Proteins: genetics
|2 MeSH
650 _ 2 |a Papillomavirus E7 Proteins: metabolism
|2 MeSH
650 _ 2 |a Papillomavirus E7 Proteins: genetics
|2 MeSH
650 _ 2 |a Cell Line, Tumor
|2 MeSH
700 1 _ |a Velimirović, Milica
|0 P:(DE-He78)0a4c58c6737b30b65df3ed36acc08d4f
|b 1
|u dkfz
700 1 _ |a Bulkescher, Julia
|0 P:(DE-He78)c04ec6ab9480d74da506d656185ec7d2
|b 2
|u dkfz
700 1 _ |a Scheffner, Martin
|b 3
700 1 _ |a Hoppe-Seyler, Felix
|0 P:(DE-He78)25779f8829ab7a7650e85a4cc871e6ac
|b 4
|e Last author
|u dkfz
700 1 _ |a Hoppe-Seyler, Karin
|0 P:(DE-He78)97468f1980416a4376b44e701d25f24b
|b 5
|e Last author
|u dkfz
773 _ _ |a 10.1371/journal.ppat.1012914
|g Vol. 21, no. 2, p. e1012914 -
|0 PERI:(DE-600)2205412-1
|n 2
|p e1012914 -
|t PLoS pathogens
|v 21
|y 2025
|x 1553-7366
909 C O |o oai:inrepo02.dkfz.de:298616
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)b99b271e0ad2dea9ba3ebefc35af9a76
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)0a4c58c6737b30b65df3ed36acc08d4f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)c04ec6ab9480d74da506d656185ec7d2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)25779f8829ab7a7650e85a4cc871e6ac
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)97468f1980416a4376b44e701d25f24b
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS PATHOG : 2022
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-02-08T09:41:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-02-08T09:41:44Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-02-08T09:41:44Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-02-08T09:41:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLOS PATHOG : 2022
|d 2024-12-05
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-05
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 2 _ |0 I:(DE-He78)D365-20160331
|k D365
|l Molek. Therapie virusassozierter Tumore
|x 0
920 1 _ |0 I:(DE-He78)D365-20160331
|k D365
|l Molek. Therapie virusassozierter Tumore
|x 0
920 0 _ |0 I:(DE-He78)D365-20160331
|k D365
|l Molek. Therapie virusassozierter Tumore
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D365-20160331
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21