000298917 001__ 298917 000298917 005__ 20250214163723.0 000298917 0247_ $$2doi$$a10.1080/21681163.2025.2455752 000298917 0247_ $$2ISSN$$a2168-1163 000298917 0247_ $$2ISSN$$a2168-1171 000298917 037__ $$aDKFZ-2025-00353 000298917 041__ $$aEnglish 000298917 082__ $$a570 000298917 1001_ $$0P:(DE-He78)4d81d9d214f814093f29c7e21473458b$$aWalter, Alexandra$$b0$$eFirst author$$udkfz 000298917 245__ $$aAccuracy of an articulated head-and-neck motion model using deep learning-based instance segmentation of skeletal bones in CT scans for image registration in radiotherapy 000298917 260__ $$aAbingdon$$bTaylor & Francis$$c2025 000298917 3367_ $$2DRIVER$$aarticle 000298917 3367_ $$2DataCite$$aOutput Types/Journal article 000298917 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1739543872_14460 000298917 3367_ $$2BibTeX$$aARTICLE 000298917 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000298917 3367_ $$00$$2EndNote$$aJournal Article 000298917 500__ $$a#EA:E040#LA:E040# 000298917 520__ $$aKnowing about anatomical deformations in patient images is crucial for adaptive image-guided radiation therapy. Biomechanical models ensure biofidelity in deformable image registration, but manual contouring limits their clinical use. We investigate the application of automatically generated contours for a biomechanical registration model in head and neck cancer treatment. For that, we automatically generate individual bone segmentations on planning CT scans examining a custom-trained nnU-Net model and the ready-trained TotalSegmentator model. Both sets of segmentations are evaluated using DICE, Hausdorff Distance and surface DICE. We investigate their impact on the build-up of the biomechanical articulated skeleton model by deviations in joint positioning and CT-CT registration accuracy using target registration error (TRE). The custom-trained model achieves 1.51 ± 0.26 mm TRE, with no significant difference in registration accuracy. While the TotalSegmentator does not provide all structures needed for the complete biomechanical model build-up. Overall, deep learning–based automatic bone segmentation can replace manual contouring in this model, matching its performance. 000298917 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0 000298917 588__ $$aDataset connected to CrossRef, Journals: inrepo02.dkfz.de 000298917 7001_ $$0P:(DE-He78)4bd03d4309102cd33e3be66962e3506a$$aBauer, Cornelius$$b1$$eFirst author 000298917 7001_ $$0P:(DE-He78)a53fbc29983d089b1254ac458b60227d$$aYawson, Ama Katseena$$b2$$udkfz 000298917 7001_ $$0P:(DE-HGF)0$$aHoegen-Saßmannshausen, Philipp$$b3 000298917 7001_ $$aAdeberg, Sebastian$$b4 000298917 7001_ $$0P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDebus, Jürgen$$b5$$udkfz 000298917 7001_ $$0P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44$$aJäkel, Oliver$$b6$$udkfz 000298917 7001_ $$aFrank, Martin$$b7 000298917 7001_ $$0P:(DE-He78)7b7d3650efd9aeb0aff30e7fbed3ecac$$aGiske, Kristina$$b8$$eLast author$$udkfz 000298917 773__ $$0PERI:(DE-600)2731996-9$$a10.1080/21681163.2025.2455752$$gVol. 13, no. 1, p. 2455752$$n1$$p2455752$$tComputer methods in biomechanics and biomedical engineering$$v13$$x2168-1163$$y2025 000298917 909CO $$ooai:inrepo02.dkfz.de:298917$$pVDB 000298917 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4d81d9d214f814093f29c7e21473458b$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000298917 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4bd03d4309102cd33e3be66962e3506a$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000298917 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a53fbc29983d089b1254ac458b60227d$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ 000298917 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000298917 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ 000298917 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ 000298917 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7b7d3650efd9aeb0aff30e7fbed3ecac$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ 000298917 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0 000298917 9141_ $$y2025 000298917 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMP M BIO BIO E-IV : 2022$$d2024-12-18 000298917 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18 000298917 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18 000298917 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-05-10T14:21:59Z 000298917 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-05-10T14:21:59Z 000298917 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-05-10T14:21:59Z 000298917 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18 000298917 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-18 000298917 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18 000298917 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18 000298917 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-18 000298917 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-18 000298917 9202_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0 000298917 9200_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0 000298917 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0 000298917 9201_ $$0I:(DE-He78)E050-20160331$$kE050$$lE050 KKE Strahlentherapie$$x1 000298917 980__ $$ajournal 000298917 980__ $$aVDB 000298917 980__ $$aI:(DE-He78)E040-20160331 000298917 980__ $$aI:(DE-He78)E050-20160331 000298917 980__ $$aUNRESTRICTED