001     298917
005     20250214163723.0
024 7 _ |a 10.1080/21681163.2025.2455752
|2 doi
024 7 _ |a 2168-1163
|2 ISSN
024 7 _ |a 2168-1171
|2 ISSN
037 _ _ |a DKFZ-2025-00353
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Walter, Alexandra
|0 P:(DE-He78)4d81d9d214f814093f29c7e21473458b
|b 0
|e First author
|u dkfz
245 _ _ |a Accuracy of an articulated head-and-neck motion model using deep learning-based instance segmentation of skeletal bones in CT scans for image registration in radiotherapy
260 _ _ |a Abingdon
|c 2025
|b Taylor & Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1739543872_14460
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040#LA:E040#
520 _ _ |a Knowing about anatomical deformations in patient images is crucial for adaptive image-guided radiation therapy. Biomechanical models ensure biofidelity in deformable image registration, but manual contouring limits their clinical use. We investigate the application of automatically generated contours for a biomechanical registration model in head and neck cancer treatment. For that, we automatically generate individual bone segmentations on planning CT scans examining a custom-trained nnU-Net model and the ready-trained TotalSegmentator model. Both sets of segmentations are evaluated using DICE, Hausdorff Distance and surface DICE. We investigate their impact on the build-up of the biomechanical articulated skeleton model by deviations in joint positioning and CT-CT registration accuracy using target registration error (TRE). The custom-trained model achieves 1.51 ± 0.26 mm TRE, with no significant difference in registration accuracy. While the TotalSegmentator does not provide all structures needed for the complete biomechanical model build-up. Overall, deep learning–based automatic bone segmentation can replace manual contouring in this model, matching its performance.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: inrepo02.dkfz.de
700 1 _ |a Bauer, Cornelius
|0 P:(DE-He78)4bd03d4309102cd33e3be66962e3506a
|b 1
|e First author
700 1 _ |a Yawson, Ama Katseena
|0 P:(DE-He78)a53fbc29983d089b1254ac458b60227d
|b 2
|u dkfz
700 1 _ |a Hoegen-Saßmannshausen, Philipp
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Adeberg, Sebastian
|b 4
700 1 _ |a Debus, Jürgen
|0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
|b 5
|u dkfz
700 1 _ |a Jäkel, Oliver
|0 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
|b 6
|u dkfz
700 1 _ |a Frank, Martin
|b 7
700 1 _ |a Giske, Kristina
|0 P:(DE-He78)7b7d3650efd9aeb0aff30e7fbed3ecac
|b 8
|e Last author
|u dkfz
773 _ _ |a 10.1080/21681163.2025.2455752
|g Vol. 13, no. 1, p. 2455752
|0 PERI:(DE-600)2731996-9
|n 1
|p 2455752
|t Computer methods in biomechanics and biomedical engineering
|v 13
|y 2025
|x 2168-1163
909 C O |o oai:inrepo02.dkfz.de:298917
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)4d81d9d214f814093f29c7e21473458b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)4bd03d4309102cd33e3be66962e3506a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)a53fbc29983d089b1254ac458b60227d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)7b7d3650efd9aeb0aff30e7fbed3ecac
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMP M BIO BIO E-IV : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-05-10T14:21:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-05-10T14:21:59Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-05-10T14:21:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
920 2 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 0 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E050-20160331
|k E050
|l E050 KKE Strahlentherapie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a I:(DE-He78)E050-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21