000298937 001__ 298937
000298937 005__ 20250223015322.0
000298937 0247_ $$2doi$$a10.1016/j.compbiomed.2025.109777
000298937 0247_ $$2pmid$$apmid:39946787
000298937 0247_ $$2ISSN$$a0010-4825
000298937 0247_ $$2ISSN$$a1879-0534
000298937 0247_ $$2altmetric$$aaltmetric:174147562
000298937 037__ $$aDKFZ-2025-00371
000298937 041__ $$aEnglish
000298937 082__ $$a570
000298937 1001_ $$0P:(DE-He78)05d1465abf6918875d2df2781d7aec35$$aNeishabouri, Ahmad$$b0$$eFirst author$$udkfz
000298937 245__ $$aReal-time adaptive proton therapy: An AI-based spatio-temporal mono-energetic dose calculation model (CC-LSTM).
000298937 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
000298937 3367_ $$2DRIVER$$aarticle
000298937 3367_ $$2DataCite$$aOutput Types/Journal article
000298937 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1739890054_9494
000298937 3367_ $$2BibTeX$$aARTICLE
000298937 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000298937 3367_ $$00$$2EndNote$$aJournal Article
000298937 500__ $$a#EA:E050#
000298937 520__ $$aTo develop a fully AI-based dose estimation model capable of learning and estimating single pencil beam dose distributions, and to verify its performance by testing the model's generalizability on unseen, previously delivered treatment plans. Additionally, the model aims to achieve super-fast runtimes suitable for incorporation into real-time adaptive proton therapy (APT).A mono-energetic, end-to-end PB dose estimation task was defined using input Relative Stopping Power (RSP) and corresponding output dose distributions. A cohort of 90 Low-Grade-Glioma (LGG) patients was used for training and testing. The proposed CC-LSTM model employs 2-layer CNNs to extract spatial features from Beam's Eye View (BEV) slices, followed by a custom ConvLSTM to propagate 2D features along the beam path. A 3-layer CNN then reconstructs 2D dose distributions, which, in an auto-regressive scheme, form the 3D dose distribution of a single PB.CC-LSTM demonstrated notable accuracy improvements over the RNN-based model, with the average local gamma-index pass rate at [1%, 2mm] increasing from 92.54% to 97.21% and the worst-case minimum rising from 71.69% to 92.37%, underscoring the robustness of the proposed AI-based dose estimation model. Additionally, CC-LSTM outperformed the current state-of-the-art (SOTA) model, achieving a notable decrease of up to three orders of magnitude in the MSE, faster runtimes, and a 98.8% reduction in the number of learnable parameters compared to the SOTA model.CC-LSTM can effectively learn the dose estimation task and generalize to unseen patient cases, achieving accuracies comparable to the gold-standard Monte Carlo simulations for highly heterogeneous cases, while maintaining runtimes suitable for incorporation into real-time APT.
000298937 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000298937 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000298937 650_7 $$2Other$$aAI-based dose calculation
000298937 650_7 $$2Other$$aAdaptive proton therapy
000298937 650_7 $$2Other$$aDeep learning
000298937 650_7 $$2Other$$aDose calculation
000298937 650_7 $$2Other$$aLSTM
000298937 650_7 $$2Other$$aProton therapy
000298937 7001_ $$aBauer, Julia$$b1
000298937 7001_ $$aAbdollahi, Amir$$b2
000298937 7001_ $$0P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDebus, Jürgen$$b3$$udkfz
000298937 7001_ $$aMairani, Andrea$$b4
000298937 773__ $$0PERI:(DE-600)1496984-1$$a10.1016/j.compbiomed.2025.109777$$gVol. 188, p. 109777 -$$p109777$$tComputers in biology and medicine$$v188$$x0010-4825$$y2025
000298937 909CO $$ooai:inrepo02.dkfz.de:298937$$pVDB
000298937 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)05d1465abf6918875d2df2781d7aec35$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000298937 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000298937 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000298937 9141_ $$y2025
000298937 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-18$$wger
000298937 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT BIOL MED : 2022$$d2024-12-18
000298937 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000298937 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000298937 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
000298937 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
000298937 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000298937 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
000298937 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
000298937 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-18
000298937 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-18
000298937 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
000298937 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000298937 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMPUT BIOL MED : 2022$$d2024-12-18
000298937 9201_ $$0I:(DE-He78)E050-20160331$$kE050$$lE050 KKE Strahlentherapie$$x0
000298937 9200_ $$0I:(DE-He78)E050-20160331$$kE050$$lE050 KKE Strahlentherapie$$x0
000298937 980__ $$ajournal
000298937 980__ $$aVDB
000298937 980__ $$aI:(DE-He78)E050-20160331
000298937 980__ $$aUNRESTRICTED