000298939 001__ 298939
000298939 005__ 20250218163753.0
000298939 0247_ $$2doi$$a10.3390/ma18030621
000298939 0247_ $$2pmid$$apmid:39942287
000298939 0247_ $$2pmc$$apmc:PMC11818730
000298939 037__ $$aDKFZ-2025-00373
000298939 041__ $$aEnglish
000298939 082__ $$a600
000298939 1001_ $$aGaluzzi, Laura$$b0
000298939 245__ $$aFluorescent Neutron Track Detectors for Boron-10 Microdistribution Measurement in BNCT: A Feasibility Study.
000298939 260__ $$aBasel$$bMDPI$$c2025
000298939 3367_ $$2DRIVER$$aarticle
000298939 3367_ $$2DataCite$$aOutput Types/Journal article
000298939 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1739891218_9494
000298939 3367_ $$2BibTeX$$aARTICLE
000298939 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000298939 3367_ $$00$$2EndNote$$aJournal Article
000298939 500__ $$aDivision of Radiology and Division of Medical Physics in Radiation Oncology, DKFZ
000298939 520__ $$aBoron Neutron-Capture Therapy (BNCT) is a form of radiation therapy that relies on the highly localized and enhanced biological effects of the 10B neutron capture (BNC) reaction products to selectively kill cancer cells. The efficacy of BNCT is, therefore, strongly dependent on the 10B spatial microdistribution at a subcellular level. Fluorescent Nuclear Track Detectors (FNTDs) could be a promising technology for measuring 10B microdistribution. They allow the measurement of the tracks of charged particles, and their biocompatibility allows cell samples to be deposited and grown on their surfaces. If a layer of borated cells is deposited and irradiated by a neutron field, the energy deposited by the BNC products and their trajectories can be measured by analyzing the corresponding tracks. This allows the reconstruction of the position where the measured particles were generated, hence the microdistribution of 10B. With respect to other techniques developed to measure 10B microdistribution, FNTDs would be a non-destructive, biocompatible, relatively easy-to-use, and accessible method, allowing the simultaneous measurement of the 10B microdistribution, the LET of particles, and the evolution of the related biological response on the very same cell sample. An FNTD was tested in three irradiation conditions to study the feasibility of FNTDs for BNCT applications. The FNTD allowed the successful measurement of the correct alpha particle range and mean penetration depth expected for all the radiation fields employed. This work proved the feasibility of FNTD in reconstructing the tracks of the alpha particles produced in typical BNCT conditions, thus the 10B microdistribution. Further experiments are planned at the University of Pavia's LENA (Applied Nuclear Energy Laboratory) to test the final set-up coupling the FNTD with borated cell samples.
000298939 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000298939 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000298939 650_7 $$2Other$$aBNCT
000298939 650_7 $$2Other$$aFluorescent Nuclear Track Detector
000298939 650_7 $$2Other$$aboron microdistribution
000298939 650_7 $$2Other$$aparticle track
000298939 7001_ $$00000-0001-5777-1269$$aParisi, Gabriele$$b1
000298939 7001_ $$00009-0001-5324-7221$$aPascali, Valeria$$b2
000298939 7001_ $$0P:(DE-He78)87c7a90aa97629c950fb781d466f5c65$$aNiklas, Martin$$b3$$udkfz
000298939 7001_ $$00000-0001-7481-0653$$aBortot, Davide$$b4
000298939 7001_ $$00000-0002-2415-128X$$aProtti, Nicoletta$$b5
000298939 7001_ $$00000-0002-1376-3686$$aAltieri, Saverio$$b6
000298939 773__ $$0PERI:(DE-600)2487261-1$$a10.3390/ma18030621$$gVol. 18, no. 3, p. 621 -$$n3$$p621$$tMaterials$$v18$$x1996-1944$$y2025
000298939 909CO $$ooai:inrepo02.dkfz.de:298939$$pVDB
000298939 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)87c7a90aa97629c950fb781d466f5c65$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000298939 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000298939 9141_ $$y2025
000298939 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATERIALS : 2022$$d2025-01-07
000298939 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
000298939 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
000298939 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-10-25T11:58:26Z
000298939 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-10-25T11:58:26Z
000298939 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-10-25T11:58:26Z
000298939 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-10-25T11:58:26Z
000298939 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-07
000298939 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-07
000298939 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
000298939 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-07
000298939 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
000298939 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
000298939 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
000298939 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-07
000298939 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-07
000298939 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-07
000298939 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000298939 9201_ $$0I:(DE-He78)E041-20160331$$kE041$$lMed. Physik in der Radioonkologie$$x1
000298939 980__ $$ajournal
000298939 980__ $$aVDB
000298939 980__ $$aI:(DE-He78)E010-20160331
000298939 980__ $$aI:(DE-He78)E041-20160331
000298939 980__ $$aUNRESTRICTED