000298963 001__ 298963
000298963 005__ 20250507155924.0
000298963 0247_ $$2doi$$a10.1111/bju.16676
000298963 0247_ $$2pmid$$apmid:39967059
000298963 0247_ $$2ISSN$$a1464-4096
000298963 0247_ $$2ISSN$$a1464-410X
000298963 037__ $$aDKFZ-2025-00392
000298963 041__ $$aEnglish
000298963 082__ $$a610
000298963 1001_ $$0P:(DE-He78)1bd85ca1db71295ff9cd4e6791d622bd$$aCarl, Nicolas$$b0$$eFirst author$$udkfz
000298963 245__ $$aEvaluating interactions of patients with large language models for medical information.
000298963 260__ $$aOxford$$bWiley-Blackwell$$c2025
000298963 3367_ $$2DRIVER$$aarticle
000298963 3367_ $$2DataCite$$aOutput Types/Journal article
000298963 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1746626312_12145
000298963 3367_ $$2BibTeX$$aARTICLE
000298963 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000298963 3367_ $$00$$2EndNote$$aJournal Article
000298963 500__ $$a#EA:C140#LA:C140# / 2025 Jun;135(6):1010-1017
000298963 520__ $$aTo explore the interaction of real-world patients with a chatbot in a clinical setting, investigating key aspects of medical information provided by large language models (LLMs).The study enrolled 300 patients seeking urological counselling between February and July 2024. First, participants voluntarily conversed with a Generative Pre-trained Transformer 4 (GPT-4) powered chatbot to ask questions related to their medical situation. In the following survey, patients rated the perceived utility, completeness, and understandability of the information provided during the simulated conversation as well as user-friendliness. Finally, patients were asked which, in their experience, best answered their questions: LLMs, urologists, or search engines.A total of 292 patients completed the study. The majority of patients perceived the chatbot as providing useful, complete, and understandable information, as well as being user-friendly. However, the ability of human urologists to answer medical questions in an understandable way was rated higher than of LLMs. Interestingly, 53% of participants rated the question-answering ability of LLMs higher than search engines. Age was not associated with preferences. Limitations include social desirability and sampling biases.This study highlights the potential of LLMs to enhance patient education and communication in clinical settings, with patients valuing their user-friendliness and comprehensiveness for medical information. By addressing preliminary questions, LLMs could potentially relieve time constraints on healthcare providers, enabling medical personnel to focus on complex inquiries and patient care.
000298963 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000298963 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000298963 650_7 $$2Other$$aartificial intelligence
000298963 650_7 $$2Other$$aclinical trial
000298963 650_7 $$2Other$$aimplementation science
000298963 650_7 $$2Other$$alarge language models
000298963 650_7 $$2Other$$apatient interaction
000298963 7001_ $$0P:(DE-He78)66709673985c9dca243b45cfbe991001$$aHaggenmüller, Sarah$$b1$$udkfz
000298963 7001_ $$0P:(DE-He78)3c4243de81f11e32405a8ad3bd617e2f$$aWies, Christoph$$b2$$udkfz
000298963 7001_ $$aNguyen, Lisa$$b3
000298963 7001_ $$0P:(DE-He78)3bd296f65df45e39a49f2b4a3479aa6b$$aWinterstein, Jana Theres$$b4$$udkfz
000298963 7001_ $$0P:(DE-He78)0fffa4b46f40b3111930bdebe002ed1f$$aHetz, Martin Joachim$$b5$$udkfz
000298963 7001_ $$aMangold, Maurin Helen$$b6
000298963 7001_ $$aHartung, Friedrich Otto$$b7
000298963 7001_ $$aGrüne, Britta$$b8
000298963 7001_ $$0P:(DE-He78)457c042884c901eb0a02c18bb1d30103$$aHolland-Letz, Tim$$b9$$udkfz
000298963 7001_ $$aMichel, Maurice Stephan$$b10
000298963 7001_ $$0P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb$$aBrinker, Titus$$b11$$eLast author$$udkfz
000298963 7001_ $$aWessels, Frederik$$b12
000298963 773__ $$0PERI:(DE-600)2019983-1$$a10.1111/bju.16676$$gp. bju.16676$$n6$$p1010-1017$$tBJU international$$v135$$x1464-4096$$y2025
000298963 909CO $$ooai:inrepo02.dkfz.de:298963$$pVDB
000298963 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1bd85ca1db71295ff9cd4e6791d622bd$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000298963 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)66709673985c9dca243b45cfbe991001$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000298963 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3c4243de81f11e32405a8ad3bd617e2f$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000298963 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3bd296f65df45e39a49f2b4a3479aa6b$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000298963 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0fffa4b46f40b3111930bdebe002ed1f$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000298963 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)457c042884c901eb0a02c18bb1d30103$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000298963 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000298963 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000298963 9141_ $$y2025
000298963 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-11$$wger
000298963 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
000298963 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
000298963 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
000298963 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-11
000298963 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
000298963 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-11
000298963 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-11
000298963 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
000298963 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
000298963 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBJU INT : 2022$$d2024-12-11
000298963 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
000298963 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
000298963 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
000298963 9202_ $$0I:(DE-He78)C140-20160331$$kC140$$lDigitale Prävention, Diagnostik und Therapiesteuerung$$x0
000298963 9201_ $$0I:(DE-He78)C140-20160331$$kC140$$lDigitale Prävention, Diagnostik und Therapiesteuerung$$x0
000298963 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x1
000298963 9200_ $$0I:(DE-He78)C140-20160331$$kC140$$lDigitale Prävention, Diagnostik und Therapiesteuerung$$x0
000298963 980__ $$ajournal
000298963 980__ $$aVDB
000298963 980__ $$aI:(DE-He78)C140-20160331
000298963 980__ $$aI:(DE-He78)C060-20160331
000298963 980__ $$aUNRESTRICTED