001     298963
005     20250507155924.0
024 7 _ |a 10.1111/bju.16676
|2 doi
024 7 _ |a pmid:39967059
|2 pmid
024 7 _ |a 1464-4096
|2 ISSN
024 7 _ |a 1464-410X
|2 ISSN
037 _ _ |a DKFZ-2025-00392
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Carl, Nicolas
|0 P:(DE-He78)1bd85ca1db71295ff9cd4e6791d622bd
|b 0
|e First author
|u dkfz
245 _ _ |a Evaluating interactions of patients with large language models for medical information.
260 _ _ |a Oxford
|c 2025
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1746626312_12145
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C140#LA:C140# / 2025 Jun;135(6):1010-1017
520 _ _ |a To explore the interaction of real-world patients with a chatbot in a clinical setting, investigating key aspects of medical information provided by large language models (LLMs).The study enrolled 300 patients seeking urological counselling between February and July 2024. First, participants voluntarily conversed with a Generative Pre-trained Transformer 4 (GPT-4) powered chatbot to ask questions related to their medical situation. In the following survey, patients rated the perceived utility, completeness, and understandability of the information provided during the simulated conversation as well as user-friendliness. Finally, patients were asked which, in their experience, best answered their questions: LLMs, urologists, or search engines.A total of 292 patients completed the study. The majority of patients perceived the chatbot as providing useful, complete, and understandable information, as well as being user-friendly. However, the ability of human urologists to answer medical questions in an understandable way was rated higher than of LLMs. Interestingly, 53% of participants rated the question-answering ability of LLMs higher than search engines. Age was not associated with preferences. Limitations include social desirability and sampling biases.This study highlights the potential of LLMs to enhance patient education and communication in clinical settings, with patients valuing their user-friendliness and comprehensiveness for medical information. By addressing preliminary questions, LLMs could potentially relieve time constraints on healthcare providers, enabling medical personnel to focus on complex inquiries and patient care.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a artificial intelligence
|2 Other
650 _ 7 |a clinical trial
|2 Other
650 _ 7 |a implementation science
|2 Other
650 _ 7 |a large language models
|2 Other
650 _ 7 |a patient interaction
|2 Other
700 1 _ |a Haggenmüller, Sarah
|0 P:(DE-He78)66709673985c9dca243b45cfbe991001
|b 1
|u dkfz
700 1 _ |a Wies, Christoph
|0 P:(DE-He78)3c4243de81f11e32405a8ad3bd617e2f
|b 2
|u dkfz
700 1 _ |a Nguyen, Lisa
|b 3
700 1 _ |a Winterstein, Jana Theres
|0 P:(DE-He78)3bd296f65df45e39a49f2b4a3479aa6b
|b 4
|u dkfz
700 1 _ |a Hetz, Martin Joachim
|0 P:(DE-He78)0fffa4b46f40b3111930bdebe002ed1f
|b 5
|u dkfz
700 1 _ |a Mangold, Maurin Helen
|b 6
700 1 _ |a Hartung, Friedrich Otto
|b 7
700 1 _ |a Grüne, Britta
|b 8
700 1 _ |a Holland-Letz, Tim
|0 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
|b 9
|u dkfz
700 1 _ |a Michel, Maurice Stephan
|b 10
700 1 _ |a Brinker, Titus
|0 P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb
|b 11
|e Last author
|u dkfz
700 1 _ |a Wessels, Frederik
|b 12
773 _ _ |a 10.1111/bju.16676
|g p. bju.16676
|0 PERI:(DE-600)2019983-1
|n 6
|p 1010-1017
|t BJU international
|v 135
|y 2025
|x 1464-4096
909 C O |p VDB
|o oai:inrepo02.dkfz.de:298963
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)1bd85ca1db71295ff9cd4e6791d622bd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)66709673985c9dca243b45cfbe991001
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)3c4243de81f11e32405a8ad3bd617e2f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)3bd296f65df45e39a49f2b4a3479aa6b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)0fffa4b46f40b3111930bdebe002ed1f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BJU INT : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-11
920 2 _ |0 I:(DE-He78)C140-20160331
|k C140
|l Digitale Prävention, Diagnostik und Therapiesteuerung
|x 0
920 1 _ |0 I:(DE-He78)C140-20160331
|k C140
|l Digitale Prävention, Diagnostik und Therapiesteuerung
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
920 0 _ |0 I:(DE-He78)C140-20160331
|k C140
|l Digitale Prävention, Diagnostik und Therapiesteuerung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C140-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21