001     299473
005     20250302015431.0
024 7 _ |a 10.1073/pnas.2415475122
|2 doi
024 7 _ |a pmid:39993200
|2 pmid
024 7 _ |a 0027-8424
|2 ISSN
024 7 _ |a 1091-6490
|2 ISSN
024 7 _ |a altmetric:174704671
|2 altmetric
037 _ _ |a DKFZ-2025-00433
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Starostecka, Maja
|b 0
245 _ _ |a Structural variant and nucleosome occupancy dynamics postchemotherapy in a HER2+ breast cancer organoid model.
260 _ _ |a Washington, DC
|c 2025
|b National Acad. of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1740560969_9689
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:B480#
520 _ _ |a The most common chemotherapeutics induce DNA damage to eradicate cancer cells, yet defective DNA repair can propagate mutations, instigating therapy resistance and secondary malignancies. Structural variants (SVs), arising from copy-number-imbalanced and -balanced DNA rearrangements, are a major driver of tumor evolution, yet understudied posttherapy. Here, we adapted single-cell template-strand sequencing (Strand-seq) to a HER2+ breast cancer model to investigate the formation of doxorubicin-induced de novo SVs. We coupled this approach with nucleosome occupancy (NO) measurements obtained from the same single cell to enable simultaneous SV detection and cell-type classification. Using organoids from TetO-CMYC/TetO-Neu/MMTV-rtTA mice modeling HER2+ breast cancer, we generated 459 Strand-seq libraries spanning various tumorigenesis stages, identifying a 7.4-fold increase in large chromosomal alterations post-doxorubicin. Complex DNA rearrangements, deletions, and duplications were prevalent across basal, luminal progenitor (LP), and mature luminal (ML) cells, indicating uniform susceptibility of these cell types to SV formation. Doxorubicin further elevated sister chromatid exchanges (SCEs), indicative of genomic stress persisting posttreatment. Altered nucleosome occupancy levels on distinct cancer-related genes further underscore the broad genomic impact of doxorubicin. The organoid-based system for single-cell multiomics established in this study paves the way for unraveling the most important therapy-associated SV mutational signatures, enabling systematic studies of the effect of therapy on cancer evolution.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a breast cancer
|2 Other
650 _ 7 |a organoids
|2 Other
650 _ 7 |a single-cell multi-omics
|2 Other
650 _ 7 |a structural variation
|2 Other
650 _ 7 |a Nucleosomes
|2 NLM Chemicals
650 _ 7 |a Doxorubicin
|0 80168379AG
|2 NLM Chemicals
650 _ 7 |a Receptor, ErbB-2
|0 EC 2.7.10.1
|2 NLM Chemicals
650 _ 7 |a ERBB2 protein, human
|0 EC 2.7.10.1
|2 NLM Chemicals
650 _ 2 |a Nucleosomes: metabolism
|2 MeSH
650 _ 2 |a Organoids: metabolism
|2 MeSH
650 _ 2 |a Organoids: drug effects
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Breast Neoplasms: drug therapy
|2 MeSH
650 _ 2 |a Breast Neoplasms: genetics
|2 MeSH
650 _ 2 |a Breast Neoplasms: metabolism
|2 MeSH
650 _ 2 |a Breast Neoplasms: pathology
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Doxorubicin: pharmacology
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Receptor, ErbB-2: metabolism
|2 MeSH
650 _ 2 |a Receptor, ErbB-2: genetics
|2 MeSH
650 _ 2 |a Single-Cell Analysis: methods
|2 MeSH
700 1 _ |a Jeong, Hyobin
|0 0000-0002-1526-3343
|b 1
700 1 _ |a Hasenfeld, Patrick
|b 2
700 1 _ |a Benito-Garagorri, Eva
|b 3
700 1 _ |a Christiansen, Tania
|0 P:(DE-He78)a1b80a5df1ba15f83efa7b523ecf2597
|b 4
700 1 _ |a Stober Brasseur, Catherine
|b 5
700 1 _ |a Gomes Queiroz, Maise
|0 0000-0002-7189-0608
|b 6
700 1 _ |a Garcia Montero, Marta
|b 7
700 1 _ |a Jechlinger, Martin
|b 8
700 1 _ |a Korbel, Jan
|0 P:(DE-He78)372b77c2acf8604690a6a325a4e89287
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.1073/pnas.2415475122
|g Vol. 122, no. 9, p. e2415475122
|0 PERI:(DE-600)1461794-8
|n 9
|p e2415475122
|t Proceedings of the National Academy of Sciences of the United States of America
|v 122
|y 2025
|x 0027-8424
909 C O |o oai:inrepo02.dkfz.de:299473
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)a1b80a5df1ba15f83efa7b523ecf2597
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)372b77c2acf8604690a6a325a4e89287
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2024-12-10
920 2 _ |0 I:(DE-He78)B480-20160331
|k B480
|l Mechanismen der genetischen Variation und Datenwissenschaft
|x 0
920 1 _ |0 I:(DE-He78)B480-20160331
|k B480
|l Mechanismen der genetischen Variation und Datenwissenschaft
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B480-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21