000299487 001__ 299487 000299487 005__ 20250309015504.0 000299487 0247_ $$2doi$$a10.1161/JAHA.124.038708 000299487 0247_ $$2pmid$$apmid:39996451 000299487 0247_ $$2altmetric$$aaltmetric:174885587 000299487 037__ $$aDKFZ-2025-00447 000299487 041__ $$aEnglish 000299487 082__ $$a610 000299487 1001_ $$00000-0001-6058-8983$$aMoreno Velásquez, Ilais$$b0 000299487 245__ $$aSex Differences in the Relationship of Socioeconomic Position With Cardiovascular Disease, Cardiovascular Risk Factors, and Estimated Cardiovascular Disease Risk: Results of the German National Cohort. 000299487 260__ $$aNew York, NY$$bAssociation$$c2025 000299487 3367_ $$2DRIVER$$aarticle 000299487 3367_ $$2DataCite$$aOutput Types/Journal article 000299487 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1741187223_10935 000299487 3367_ $$2BibTeX$$aARTICLE 000299487 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000299487 3367_ $$00$$2EndNote$$aJournal Article 000299487 500__ $$a2025 Mar 4;14(5):e038708 000299487 520__ $$aUsing data from the largest German cohort study, we aimed to investigate sex differences in the relationship of socioeconomic position (SEP) with cardiovascular disease (CVD), CVD risk factors, and estimated CVD risk.A total of 204 780 (50.5% women) participants from the baseline examination of the population-based NAKO (German National Cohort) were included. Logistic, multinomial, and linear regression models were used to estimate sex-specific odds ratios (ORs) and β coefficients with 95% CIs of CVD, CVD risk factors, and very high-risk score (Systemic Coronary Risk Estimation-2) for CVD associated with SEP. Women-to-men ratios of ORs (RORs) with 95% CIs were estimated. In women compared with men, low versus high SEP (educational attainment and relative income) was more strongly associated with myocardial infarction, hypertension, obesity, overweight, elevated blood pressure, antihypertensive medication, and current alcohol consumption, but less strongly with current and former smoking. In women with the lowest versus highest educational level, the OR for a very high 10-year CVD risk was 3.61 (95% CI, 2.88-4.53) compared with 1.72 (95% CI, 1.51-1.96) in men. The women-to-men ROR was 2.33 (95% CI, 1.78-3.05). For the comparison of low versus high relative income, the odds of having a very high 10-year CVD risk was 2.55 (95% CI, 2.04-3.18) in women and 2.25 (95% CI, 2.08-2.42) in men (women-to-men ROR, 1.31 [95% CI, 1.05-1.63]).In women and men, there was an inverse relationship between indicators of SEP and the likelihood of having several CVD risk factors and a very high 10-year CVD risk. This association was stronger in women, suggesting that CVD risk is more strongly influenced by SEP in women compared with men. 000299487 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0 000299487 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de 000299487 650_7 $$2Other$$acardiovascular disease 000299487 650_7 $$2Other$$acardiovascular risk 000299487 650_7 $$2Other$$aeducational attainment 000299487 650_7 $$2Other$$aincome 000299487 650_7 $$2Other$$asocioeconomic position 000299487 7001_ $$00000-0003-0346-5412$$aPeters, Sanne A E$$b1 000299487 7001_ $$00000-0002-0378-0757$$aDragano, Nico$$b2 000299487 7001_ $$0P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aGreiser, Karin-Halina$$b3$$udkfz 000299487 7001_ $$00000-0001-7471-475X$$aDörr, Marcus$$b4 000299487 7001_ $$00000-0002-3011-6886$$aFischer, Beate$$b5 000299487 7001_ $$00000-0001-8966-3684$$aBerger, Klaus$$b6 000299487 7001_ $$00000-0003-4420-5449$$aHannemann, Anke$$b7 000299487 7001_ $$00000-0001-7170-9509$$aSchnabel, Renate B$$b8 000299487 7001_ $$00000-0002-6678-7964$$aNauck, Matthias$$b9 000299487 7001_ $$aGöttlicher, Susanne$$b10 000299487 7001_ $$00000-0002-4788-2341$$aRospleszcz, Susanne$$b11 000299487 7001_ $$00009-0006-1270-2597$$aWillich, Stefan N$$b12 000299487 7001_ $$00000-0002-6089-5163$$aKrist, Lilian$$b13 000299487 7001_ $$00000-0002-0830-5277$$aSchulze, Matthias B$$b14 000299487 7001_ $$00000-0003-3801-4769$$aGünther, Kathrin$$b15 000299487 7001_ $$00000-0001-5140-7511$$aBrand, Tilman$$b16 000299487 7001_ $$00000-0002-4559-9374$$aSchikowski, Tamara$$b17 000299487 7001_ $$aEmmel, Carina$$b18 000299487 7001_ $$aSchmidt, Börge$$b19 000299487 7001_ $$aMichels, Karin B$$b20 000299487 7001_ $$00000-0003-1271-7204$$aMikolajczyk, Rafael$$b21 000299487 7001_ $$aKluttig, Alexander$$b22 000299487 7001_ $$aHarth, Volker$$b23 000299487 7001_ $$00000-0002-0903-9142$$aObi, Nadia$$b24 000299487 7001_ $$00000-0003-1762-8462$$aCastell, Stefanie$$b25 000299487 7001_ $$00000-0001-9685-5369$$aKlett-Tammen, Carolina J$$b26 000299487 7001_ $$00000-0003-2544-4460$$aLieb, Wolfgang$$b27 000299487 7001_ $$00000-0002-8808-6667$$aBecher, Heiko$$b28 000299487 7001_ $$00000-0002-9974-1145$$aWinkler, Volker$$b29 000299487 7001_ $$00000-0002-9706-7599$$aMinnerup, Heike$$b30 000299487 7001_ $$00000-0003-3014-8543$$aKarch, André$$b31 000299487 7001_ $$00000-0001-6137-9702$$aMeinke-Franze, Claudia$$b32 000299487 7001_ $$00000-0002-0371-2789$$aLeitzmann, Michael$$b33 000299487 7001_ $$00000-0002-1120-1751$$aStein, Michael J$$b34 000299487 7001_ $$00000-0001-8363-943X$$aBohn, Barbara$$b35 000299487 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b36$$udkfz 000299487 7001_ $$0P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea$$aTrares, Kira$$b37$$udkfz 000299487 7001_ $$00000-0001-6645-0985$$aPeters, Annette$$b38 000299487 7001_ $$00000-0003-1568-767X$$aPischon, Tobias$$b39 000299487 773__ $$0PERI:(DE-600)2653953-6$$a10.1161/JAHA.124.038708$$gp. e038708$$n5$$pe038708$$tJournal of the American Heart Association$$v14$$x2047-9980$$y2025 000299487 909CO $$ooai:inrepo02.dkfz.de:299487$$pVDB 000299487 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000299487 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b36$$kDKFZ 000299487 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea$$aDeutsches Krebsforschungszentrum$$b37$$kDKFZ 000299487 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0 000299487 9141_ $$y2025 000299487 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-07$$wger 000299487 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM HEART ASSOC : 2022$$d2025-01-07 000299487 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07 000299487 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07 000299487 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:05:21Z 000299487 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:05:21Z 000299487 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-08-08T17:05:21Z 000299487 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07 000299487 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07 000299487 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07 000299487 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07 000299487 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ AM HEART ASSOC : 2022$$d2025-01-07 000299487 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-07 000299487 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-07 000299487 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebs$$x0 000299487 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x1 000299487 980__ $$ajournal 000299487 980__ $$aVDB 000299487 980__ $$aI:(DE-He78)C020-20160331 000299487 980__ $$aI:(DE-He78)C070-20160331 000299487 980__ $$aUNRESTRICTED