001     299487
005     20250309015504.0
024 7 _ |a 10.1161/JAHA.124.038708
|2 doi
024 7 _ |a pmid:39996451
|2 pmid
024 7 _ |a altmetric:174885587
|2 altmetric
037 _ _ |a DKFZ-2025-00447
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Moreno Velásquez, Ilais
|0 0000-0001-6058-8983
|b 0
245 _ _ |a Sex Differences in the Relationship of Socioeconomic Position With Cardiovascular Disease, Cardiovascular Risk Factors, and Estimated Cardiovascular Disease Risk: Results of the German National Cohort.
260 _ _ |a New York, NY
|c 2025
|b Association
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1741187223_10935
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2025 Mar 4;14(5):e038708
520 _ _ |a Using data from the largest German cohort study, we aimed to investigate sex differences in the relationship of socioeconomic position (SEP) with cardiovascular disease (CVD), CVD risk factors, and estimated CVD risk.A total of 204 780 (50.5% women) participants from the baseline examination of the population-based NAKO (German National Cohort) were included. Logistic, multinomial, and linear regression models were used to estimate sex-specific odds ratios (ORs) and β coefficients with 95% CIs of CVD, CVD risk factors, and very high-risk score (Systemic Coronary Risk Estimation-2) for CVD associated with SEP. Women-to-men ratios of ORs (RORs) with 95% CIs were estimated. In women compared with men, low versus high SEP (educational attainment and relative income) was more strongly associated with myocardial infarction, hypertension, obesity, overweight, elevated blood pressure, antihypertensive medication, and current alcohol consumption, but less strongly with current and former smoking. In women with the lowest versus highest educational level, the OR for a very high 10-year CVD risk was 3.61 (95% CI, 2.88-4.53) compared with 1.72 (95% CI, 1.51-1.96) in men. The women-to-men ROR was 2.33 (95% CI, 1.78-3.05). For the comparison of low versus high relative income, the odds of having a very high 10-year CVD risk was 2.55 (95% CI, 2.04-3.18) in women and 2.25 (95% CI, 2.08-2.42) in men (women-to-men ROR, 1.31 [95% CI, 1.05-1.63]).In women and men, there was an inverse relationship between indicators of SEP and the likelihood of having several CVD risk factors and a very high 10-year CVD risk. This association was stronger in women, suggesting that CVD risk is more strongly influenced by SEP in women compared with men.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a cardiovascular disease
|2 Other
650 _ 7 |a cardiovascular risk
|2 Other
650 _ 7 |a educational attainment
|2 Other
650 _ 7 |a income
|2 Other
650 _ 7 |a socioeconomic position
|2 Other
700 1 _ |a Peters, Sanne A E
|0 0000-0003-0346-5412
|b 1
700 1 _ |a Dragano, Nico
|0 0000-0002-0378-0757
|b 2
700 1 _ |a Greiser, Karin-Halina
|0 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
|b 3
|u dkfz
700 1 _ |a Dörr, Marcus
|0 0000-0001-7471-475X
|b 4
700 1 _ |a Fischer, Beate
|0 0000-0002-3011-6886
|b 5
700 1 _ |a Berger, Klaus
|0 0000-0001-8966-3684
|b 6
700 1 _ |a Hannemann, Anke
|0 0000-0003-4420-5449
|b 7
700 1 _ |a Schnabel, Renate B
|0 0000-0001-7170-9509
|b 8
700 1 _ |a Nauck, Matthias
|0 0000-0002-6678-7964
|b 9
700 1 _ |a Göttlicher, Susanne
|b 10
700 1 _ |a Rospleszcz, Susanne
|0 0000-0002-4788-2341
|b 11
700 1 _ |a Willich, Stefan N
|0 0009-0006-1270-2597
|b 12
700 1 _ |a Krist, Lilian
|0 0000-0002-6089-5163
|b 13
700 1 _ |a Schulze, Matthias B
|0 0000-0002-0830-5277
|b 14
700 1 _ |a Günther, Kathrin
|0 0000-0003-3801-4769
|b 15
700 1 _ |a Brand, Tilman
|0 0000-0001-5140-7511
|b 16
700 1 _ |a Schikowski, Tamara
|0 0000-0002-4559-9374
|b 17
700 1 _ |a Emmel, Carina
|b 18
700 1 _ |a Schmidt, Börge
|b 19
700 1 _ |a Michels, Karin B
|b 20
700 1 _ |a Mikolajczyk, Rafael
|0 0000-0003-1271-7204
|b 21
700 1 _ |a Kluttig, Alexander
|b 22
700 1 _ |a Harth, Volker
|b 23
700 1 _ |a Obi, Nadia
|0 0000-0002-0903-9142
|b 24
700 1 _ |a Castell, Stefanie
|0 0000-0003-1762-8462
|b 25
700 1 _ |a Klett-Tammen, Carolina J
|0 0000-0001-9685-5369
|b 26
700 1 _ |a Lieb, Wolfgang
|0 0000-0003-2544-4460
|b 27
700 1 _ |a Becher, Heiko
|0 0000-0002-8808-6667
|b 28
700 1 _ |a Winkler, Volker
|0 0000-0002-9974-1145
|b 29
700 1 _ |a Minnerup, Heike
|0 0000-0002-9706-7599
|b 30
700 1 _ |a Karch, André
|0 0000-0003-3014-8543
|b 31
700 1 _ |a Meinke-Franze, Claudia
|0 0000-0001-6137-9702
|b 32
700 1 _ |a Leitzmann, Michael
|0 0000-0002-0371-2789
|b 33
700 1 _ |a Stein, Michael J
|0 0000-0002-1120-1751
|b 34
700 1 _ |a Bohn, Barbara
|0 0000-0001-8363-943X
|b 35
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 36
|u dkfz
700 1 _ |a Trares, Kira
|0 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea
|b 37
|u dkfz
700 1 _ |a Peters, Annette
|0 0000-0001-6645-0985
|b 38
700 1 _ |a Pischon, Tobias
|0 0000-0003-1568-767X
|b 39
773 _ _ |a 10.1161/JAHA.124.038708
|g p. e038708
|0 PERI:(DE-600)2653953-6
|n 5
|p e038708
|t Journal of the American Heart Association
|v 14
|y 2025
|x 2047-9980
909 C O |p VDB
|o oai:inrepo02.dkfz.de:299487
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 36
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 37
|6 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM HEART ASSOC : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:05:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:05:21Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:05:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J AM HEART ASSOC : 2022
|d 2025-01-07
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-07
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-07
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21