001     299510
005     20250303163948.0
024 7 _ |a 10.1016/j.envres.2025.121259
|2 doi
024 7 _ |a pmid:40023386
|2 pmid
024 7 _ |a 0013-9351
|2 ISSN
024 7 _ |a 1096-0953
|2 ISSN
037 _ _ |a DKFZ-2025-00468
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Wolf, Kathrin
|b 0
245 _ _ |a Environmental exposure assessment in the German National Cohort (NAKO).
260 _ _ |a San Diego, Calif.
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1741015169_13676
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We aimed to assess the exposure to multiple environmental indicators and compare the spatial variation across participants of the German National Cohort (NAKO) to lay the foundation for health analyses. We collected highly resolved German-wide data to capture the following environmental drivers: urbanisation by population density; outdoor air pollution by particulate matter (PM2.5), nitrogen dioxide (NO2), ozone; road traffic noise; meteorology by air temperature, relative humidity; and the built environment by greenspace and land cover. All assessed exposures were assigned to the NAKO participants based on their baseline residential addresses. The NAKO study regions ranged from highly urbanised areas (Berlin, Hamburg) to rural regions (Neubrandenburg). This large variation is reflected in the individual environmental exposures at the place of residence. In 2019, annual PM2.5 and NO2 levels ranged from 6.0-14.6 and 3.7-33.6 μg/m3, respectively. Annual mean air temperature ranged between 7.8-12.7 °C. Noise data was available for a subset of urban residents (22 %), of which 42 % fell into the lowest and 1.8 % into the highest category of Lden 55-59 and Lden >75 dB(A), respectively. Greenspace also showed considerable differences (Normalised Difference Vegetation Index between 0.08-0.84). Spearman correlation was moderate to high within the different exposure groups, but mostly low to moderate between the groups. For the first time, a comprehensive population-based dataset with high quality environmental indicators is available for the whole of Germany. Expanding the database by adding innovative indicators such as light pollution, walkability, biodiversity as well as contextual socioeconomic factors will further increase its usefulness for science and public health.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Environmental epidemiology
|2 Other
650 _ 7 |a air pollution
|2 Other
650 _ 7 |a greenspace
|2 Other
650 _ 7 |a noise
|2 Other
650 _ 7 |a population-based cohort
|2 Other
650 _ 7 |a risk factors
|2 Other
650 _ 7 |a temperature
|2 Other
700 1 _ |a Dallavalle, Marco
|b 1
700 1 _ |a Niedermayer, Fiona
|b 2
700 1 _ |a Bolte, Gabriele
|b 3
700 1 _ |a Lakes, Tobia
|b 4
700 1 _ |a Schikowski, Tamara
|b 5
700 1 _ |a Greiser, Karin Halina
|0 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
|b 6
|u dkfz
700 1 _ |a Schwettmann, Lars
|b 7
700 1 _ |a Westerman, Ronny
|b 8
700 1 _ |a Nikolaou, Nikolaos
|b 9
700 1 _ |a Staab, Jeroen
|b 10
700 1 _ |a Wolff, Robert
|b 11
700 1 _ |a Stübs, Gunthard
|b 12
700 1 _ |a Rach, Stefan
|b 13
700 1 _ |a Schneider, Alexandra
|b 14
700 1 _ |a Peters, Annette
|b 15
700 1 _ |a Hoffmann, Barbara
|b 16
773 _ _ |a 10.1016/j.envres.2025.121259
|g Vol. 273, p. 121259 -
|0 PERI:(DE-600)1467489-0
|p 121259
|t Environmental research
|v 273
|y 2025
|x 0013-9351
909 C O |o oai:inrepo02.dkfz.de:299510
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON RES : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENVIRON RES : 2022
|d 2024-12-28
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21