Home > Publications database > Cell2fate infers RNA velocity modules to improve cell fate prediction. > print |
001 | 299517 | ||
005 | 20250410152436.0 | ||
024 | 7 | _ | |a 10.1038/s41592-025-02608-3 |2 doi |
024 | 7 | _ | |a pmid:40032996 |2 pmid |
024 | 7 | _ | |a 1548-7091 |2 ISSN |
024 | 7 | _ | |a 1548-7105 |2 ISSN |
024 | 7 | _ | |a altmetric:174823497 |2 altmetric |
037 | _ | _ | |a DKFZ-2025-00475 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Aivazidis, Alexander |b 0 |
245 | _ | _ | |a Cell2fate infers RNA velocity modules to improve cell fate prediction. |
260 | _ | _ | |a London [u.a.] |c 2025 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1744291441_33 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 2025 Apr;22(4):698-707 |
520 | _ | _ | |a RNA velocity exploits the temporal information contained in spliced and unspliced RNA counts to infer transcriptional dynamics. Existing velocity models often rely on coarse biophysical simplifications or numerical approximations to solve the underlying ordinary differential equations (ODEs), which can compromise accuracy in challenging settings, such as complex or weak transcription rate changes across cellular trajectories. Here we present cell2fate, a formulation of RNA velocity based on a linearization of the velocity ODE, which allows solving a biophysically more accurate model in a fully Bayesian fashion. As a result, cell2fate decomposes the RNA velocity solutions into modules, providing a biophysical connection between RNA velocity and statistical dimensionality reduction. We comprehensively benchmark cell2fate in real-world settings, demonstrating enhanced interpretability and power to reconstruct complex dynamics and weak dynamical signals in rare and mature cell types. Finally, we apply cell2fate to the developing human brain, where we spatially map RNA velocity modules onto the tissue architecture, connecting the spatial organization of tissues with temporal dynamics of transcription. |
536 | _ | _ | |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312) |0 G:(DE-HGF)POF4-312 |c POF4-312 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
700 | 1 | _ | |a Memi, Fani |0 0000-0002-3685-1988 |b 1 |
700 | 1 | _ | |a Kleshchevnikov, Vitalii |0 0000-0001-9110-7441 |b 2 |
700 | 1 | _ | |a Er, Sezgin |0 0000-0001-7266-9844 |b 3 |
700 | 1 | _ | |a Clarke, Brian |0 P:(DE-He78)409341d9f7e2ca20152d46e4b128a04f |b 4 |u dkfz |
700 | 1 | _ | |a Stegle, Oliver |0 P:(DE-He78)9aabcfee1a1fc9202398a45a63f0b1e3 |b 5 |u dkfz |
700 | 1 | _ | |a Bayraktar, Omer Ali |0 0000-0001-6055-277X |b 6 |
773 | _ | _ | |a 10.1038/s41592-025-02608-3 |0 PERI:(DE-600)2163081-1 |n 4 |p 698-707 |t Nature methods |v 22 |y 2025 |x 1548-7091 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:299517 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)409341d9f7e2ca20152d46e4b128a04f |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)9aabcfee1a1fc9202398a45a63f0b1e3 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-312 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Funktionelle und strukturelle Genomforschung |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2025-01-07 |w ger |
915 | _ | _ | |a DEAL Nature |0 StatID:(DE-HGF)3003 |2 StatID |d 2025-01-07 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT METHODS : 2022 |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-07 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2025-01-07 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-07 |
915 | _ | _ | |a IF >= 40 |0 StatID:(DE-HGF)9940 |2 StatID |b NAT METHODS : 2022 |d 2025-01-07 |
920 | 1 | _ | |0 I:(DE-He78)B260-20160331 |k B260 |l B260 Bioinformatik der Genomik und Systemgenetik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B260-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|