| 001 | 299528 | ||
| 005 | 20251016152844.0 | ||
| 024 | 7 | _ | |a 10.1093/neuonc/noaf046 |2 doi |
| 024 | 7 | _ | |a pmid:40040502 |2 pmid |
| 024 | 7 | _ | |a 1522-8517 |2 ISSN |
| 024 | 7 | _ | |a 1523-5866 |2 ISSN |
| 024 | 7 | _ | |a altmetric:174887904 |2 altmetric |
| 037 | _ | _ | |a DKFZ-2025-00486 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Delaidelli, Alberto |b 0 |
| 245 | _ | _ | |a High-resolution proteomic analysis of medulloblastoma clinical samples identifies therapy resistant subgroups and MYC immunohistochemistry as a powerful outcome predictor. |
| 260 | _ | _ | |a Oxford |c 2025 |b Oxford Univ. Press |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1760621297_219688 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a 2025 Oct 14;27(9):2431-2444 |
| 520 | _ | _ | |a While international consensus and the 2021 WHO classification recognize multiple molecular medulloblastoma subgroups, these are difficult to identify in clinical practice utilizing routine approaches. As a result, biology-driven risk stratification and therapy assignment for medulloblastoma remains a major clinical challenge. Here, we report mass spectrometry-based analysis of clinical samples for medulloblastoma subgroup discovery, highlighting a MYC-driven prognostic signature and MYC immunohistochemistry (IHC) as a clinically tractable method for improved risk stratification.We analyzed 56 formalin fixed paraffin embedded (FFPE) medulloblastoma samples by data independent acquisition mass spectrometry identifying a MYC proteome signature in therapy resistant Group 3 medulloblastoma. We validated MYC IHC prognostic and predictive value across two Group 3/4 medulloblastoma clinical cohorts (n=362) treated with standard therapies.After exclusion of WNT tumors, MYC IHC was an independent predictor of therapy resistance and death [HRs 23.6 and 3.23; 95% confidence interval (CI) 1.04-536.18 and 1.84-5.66; P = .047 and < .001]. Notably, only ~50% of the MYC IHC positive tumors harbored MYC amplification. Accordingly, cross-validated survival models incorporating MYC IHC outperformed current risk stratification schemes including MYC amplification, and reclassified ~20% of patients into a more appropriate very high-risk category.This study provides a high-resolution proteomic dataset that can be used as a reference for future biomarker discovery. Biology-driven clinical trials should consider MYC IHC status in their design. Integration of MYC IHC in classification algorithms for non-WNT tumors could be rapidly adopted on a global scale, independently of advanced but technically challenging molecular profiling techniques. |
| 536 | _ | _ | |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312) |0 G:(DE-HGF)POF4-312 |c POF4-312 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
| 650 | _ | 7 | |a FFPE proteomics |2 Other |
| 650 | _ | 7 | |a MYC |2 Other |
| 650 | _ | 7 | |a Medulloblastoma |2 Other |
| 650 | _ | 7 | |a biomarker |2 Other |
| 650 | _ | 7 | |a risk-stratification |2 Other |
| 700 | 1 | _ | |a Burwag, Fares |b 1 |
| 700 | 1 | _ | |a Ben-Neriah, Susana |b 2 |
| 700 | 1 | _ | |a Suk, Yujin |b 3 |
| 700 | 1 | _ | |a Shyp, Taras |b 4 |
| 700 | 1 | _ | |a Kosteniuk, Suzanne |b 5 |
| 700 | 1 | _ | |a Dunham, Christopher |0 0000-0002-6244-0584 |b 6 |
| 700 | 1 | _ | |a Cheng, Sylvia |b 7 |
| 700 | 1 | _ | |a Okonechnikov, Konstantin |0 P:(DE-He78)34b3639de467b2c700920d7cbc3d2110 |b 8 |u dkfz |
| 700 | 1 | _ | |a Schrimpf, Daniel |0 P:(DE-He78)e54a1e0999c1d8c95869ef9188b794cc |b 9 |u dkfz |
| 700 | 1 | _ | |a von Deimling, Andreas |0 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144 |b 10 |u dkfz |
| 700 | 1 | _ | |a Ellezam, Benjamin |b 11 |
| 700 | 1 | _ | |a Perreault, Sébastien |b 12 |
| 700 | 1 | _ | |a Singh, Sheila |b 13 |
| 700 | 1 | _ | |a Hawkins, Cynthia |0 0000-0003-2618-4402 |b 14 |
| 700 | 1 | _ | |a Kool, Marcel |0 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8 |b 15 |u dkfz |
| 700 | 1 | _ | |a Pfister, Stefan |0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9 |b 16 |u dkfz |
| 700 | 1 | _ | |a Steidl, Christian |b 17 |
| 700 | 1 | _ | |a Hughes, Christopher |b 18 |
| 700 | 1 | _ | |a Korshunov, Andrey |0 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93 |b 19 |u dkfz |
| 700 | 1 | _ | |a Sorensen, Poul H |b 20 |
| 773 | _ | _ | |a 10.1093/neuonc/noaf046 |g p. noaf046 |0 PERI:(DE-600)2094060-9 |n 9 |p 2431-2444 |t Neuro-Oncology |v 27 |y 2025 |x 1522-8517 |
| 909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:299528 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)34b3639de467b2c700920d7cbc3d2110 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)e54a1e0999c1d8c95869ef9188b794cc |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 15 |6 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 16 |6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 19 |6 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-312 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Funktionelle und strukturelle Genomforschung |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-11 |w ger |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEURO-ONCOLOGY : 2022 |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2024-12-11 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-11 |
| 915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NEURO-ONCOLOGY : 2022 |d 2024-12-11 |
| 920 | 1 | _ | |0 I:(DE-He78)B062-20160331 |k B062 |l B062 Pädiatrische Neuroonkologie |x 0 |
| 920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 1 |
| 920 | 1 | _ | |0 I:(DE-He78)B300-20160331 |k B300 |l KKE Neuropathologie |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-He78)B062-20160331 |
| 980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
| 980 | _ | _ | |a I:(DE-He78)B300-20160331 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|