001     299528
005     20251016152844.0
024 7 _ |a 10.1093/neuonc/noaf046
|2 doi
024 7 _ |a pmid:40040502
|2 pmid
024 7 _ |a 1522-8517
|2 ISSN
024 7 _ |a 1523-5866
|2 ISSN
024 7 _ |a altmetric:174887904
|2 altmetric
037 _ _ |a DKFZ-2025-00486
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Delaidelli, Alberto
|b 0
245 _ _ |a High-resolution proteomic analysis of medulloblastoma clinical samples identifies therapy resistant subgroups and MYC immunohistochemistry as a powerful outcome predictor.
260 _ _ |a Oxford
|c 2025
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1760621297_219688
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2025 Oct 14;27(9):2431-2444
520 _ _ |a While international consensus and the 2021 WHO classification recognize multiple molecular medulloblastoma subgroups, these are difficult to identify in clinical practice utilizing routine approaches. As a result, biology-driven risk stratification and therapy assignment for medulloblastoma remains a major clinical challenge. Here, we report mass spectrometry-based analysis of clinical samples for medulloblastoma subgroup discovery, highlighting a MYC-driven prognostic signature and MYC immunohistochemistry (IHC) as a clinically tractable method for improved risk stratification.We analyzed 56 formalin fixed paraffin embedded (FFPE) medulloblastoma samples by data independent acquisition mass spectrometry identifying a MYC proteome signature in therapy resistant Group 3 medulloblastoma. We validated MYC IHC prognostic and predictive value across two Group 3/4 medulloblastoma clinical cohorts (n=362) treated with standard therapies.After exclusion of WNT tumors, MYC IHC was an independent predictor of therapy resistance and death [HRs 23.6 and 3.23; 95% confidence interval (CI) 1.04-536.18 and 1.84-5.66; P = .047 and < .001]. Notably, only ~50% of the MYC IHC positive tumors harbored MYC amplification. Accordingly, cross-validated survival models incorporating MYC IHC outperformed current risk stratification schemes including MYC amplification, and reclassified ~20% of patients into a more appropriate very high-risk category.This study provides a high-resolution proteomic dataset that can be used as a reference for future biomarker discovery. Biology-driven clinical trials should consider MYC IHC status in their design. Integration of MYC IHC in classification algorithms for non-WNT tumors could be rapidly adopted on a global scale, independently of advanced but technically challenging molecular profiling techniques.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a FFPE proteomics
|2 Other
650 _ 7 |a MYC
|2 Other
650 _ 7 |a Medulloblastoma
|2 Other
650 _ 7 |a biomarker
|2 Other
650 _ 7 |a risk-stratification
|2 Other
700 1 _ |a Burwag, Fares
|b 1
700 1 _ |a Ben-Neriah, Susana
|b 2
700 1 _ |a Suk, Yujin
|b 3
700 1 _ |a Shyp, Taras
|b 4
700 1 _ |a Kosteniuk, Suzanne
|b 5
700 1 _ |a Dunham, Christopher
|0 0000-0002-6244-0584
|b 6
700 1 _ |a Cheng, Sylvia
|b 7
700 1 _ |a Okonechnikov, Konstantin
|0 P:(DE-He78)34b3639de467b2c700920d7cbc3d2110
|b 8
|u dkfz
700 1 _ |a Schrimpf, Daniel
|0 P:(DE-He78)e54a1e0999c1d8c95869ef9188b794cc
|b 9
|u dkfz
700 1 _ |a von Deimling, Andreas
|0 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
|b 10
|u dkfz
700 1 _ |a Ellezam, Benjamin
|b 11
700 1 _ |a Perreault, Sébastien
|b 12
700 1 _ |a Singh, Sheila
|b 13
700 1 _ |a Hawkins, Cynthia
|0 0000-0003-2618-4402
|b 14
700 1 _ |a Kool, Marcel
|0 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
|b 15
|u dkfz
700 1 _ |a Pfister, Stefan
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 16
|u dkfz
700 1 _ |a Steidl, Christian
|b 17
700 1 _ |a Hughes, Christopher
|b 18
700 1 _ |a Korshunov, Andrey
|0 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
|b 19
|u dkfz
700 1 _ |a Sorensen, Poul H
|b 20
773 _ _ |a 10.1093/neuonc/noaf046
|g p. noaf046
|0 PERI:(DE-600)2094060-9
|n 9
|p 2431-2444
|t Neuro-Oncology
|v 27
|y 2025
|x 1522-8517
909 C O |p VDB
|o oai:inrepo02.dkfz.de:299528
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)34b3639de467b2c700920d7cbc3d2110
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)e54a1e0999c1d8c95869ef9188b794cc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOLOGY : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NEURO-ONCOLOGY : 2022
|d 2024-12-11
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 1 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)B300-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21