001     299567
005     20250507140306.0
024 7 _ |a 10.1093/ehjci/jeaf081
|2 doi
024 7 _ |a pmid:40052574
|2 pmid
024 7 _ |a 2047-2404
|2 ISSN
024 7 _ |a 2047-2412
|2 ISSN
024 7 _ |a altmetric:175044579
|2 altmetric
037 _ _ |a DKFZ-2025-00508
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Fay, Louisa
|0 0009-0005-5071-5519
|b 0
245 _ _ |a Determinants of ascending aortic morphology: Cross-sectional deep learning-based analysis on 25,073 non-contrast-enhanced NAKO MRI studies.
260 _ _ |a Oxford
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1746619353_3748
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2025 Apr 30;26(5):895-907
520 _ _ |a Understanding determinants of thoracic aortic morphology is crucial for precise diagnostics and therapeutic approaches. This study aimed to automatically characterize ascending aortic morphology based on 3D non-contrast-enhanced magnetic resonance angiography (NC-MRA) data from the epidemiological cross-sectional German National Cohort (NAKO) and to investigate possible determinants of mid-ascending aortic diameter (mid-AAoD).Deep learning (DL) automatically segmented the thoracic aorta and ascending aortic length, volume, and diameter was extracted from 25,073 NC-MRAs. Statistical analyses investigated relationships between mid-AAoD and demographic factors, hypertension, diabetes, alcohol, and tobacco consumption. Males exhibited significantly larger mid-AAoD than females (M:35.5±4.8mm, F:33.3±4.5mm). Age and body surface area (BSA) were positively correlated with mid-AAoD (age: male: r²=0.20, p<0.001, female: r²=0.16, p<0.001; BSA: male: r²=0.08, p<0.001, female: r²=0.05, p<0.001). Hypertensive and diabetic subjects showed higher mid-AAoD (ΔHypertension = 2.9 ± 0.5mm; ΔDiabetes = 1.5 ± 0.6mm). Hypertension was linked to higher mid-AAoD regardless of age and BSA, while diabetes and mid-AAoD were uncorrelated across age-stratified subgroups. Daily alcohol consumption (male: 37.4±5.1mm, female: 35.0±4.8mm) and smoking history exceeding 16.5 pack-years (male: 36.6±5.0mm, female: 33.9±4.3mm) exhibited highest mid-AAoD. Causal analysis (Peter-Clark algorithm) suggested that age, BSA, hypertension, and alcohol consumption are possibly causally related to mid-AAoD, while diabetes and smoking are likely spuriously correlated.This study demonstrates the potential of DL and causal analysis for understanding ascending aortic morphology. By disentangling observed correlations using causal analysis, this approach identifies possible causal determinants, such as age, BSA, hypertension, and alcohol consumption. These findings can inform targeted diagnostics and preventive strategies, supporting clinical decision-making for cardiovascular health.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Thoracic aorta
|2 Other
650 _ 7 |a aortic organ
|2 Other
650 _ 7 |a automated shape analysis
|2 Other
650 _ 7 |a causality
|2 Other
650 _ 7 |a deep learning
|2 Other
650 _ 7 |a non-contrast-enhanced magnetic resonance angiography
|2 Other
700 1 _ |a Hepp, Tobias
|b 1
700 1 _ |a Winkelmann, Moritz T
|b 2
700 1 _ |a Peters, Annette
|b 3
700 1 _ |a Heier, Margit
|b 4
700 1 _ |a Niendorf, Thoralf
|0 0000-0001-7584-6527
|b 5
700 1 _ |a Pischon, Tobias
|b 6
700 1 _ |a Endemann, Beate
|b 7
700 1 _ |a Schulz-Menger, Jeanette
|0 0000-0003-3100-1092
|b 8
700 1 _ |a Krist, Lilian
|b 9
700 1 _ |a Schulze, Matthias B
|b 10
700 1 _ |a Mikolajczyk, Rafael
|0 0000-0002-3125-7859
|b 11
700 1 _ |a Wienke, Andreas
|b 12
700 1 _ |a Obi, Nadia
|0 0000-0002-0903-9142
|b 13
700 1 _ |a Silenou, Bernard C
|b 14
700 1 _ |a Lange, Berit
|b 15
700 1 _ |a Kauczor, Hans-Ulrich
|b 16
700 1 _ |a Lieb, Wolfgang
|b 17
700 1 _ |a Baurecht, Hansjörg
|b 18
700 1 _ |a Leitzmann, Michael
|b 19
700 1 _ |a Trares, Kira
|0 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea
|b 20
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 21
|u dkfz
700 1 _ |a Michels, Karin B
|b 22
700 1 _ |a Jaskulski, Stefanie
|b 23
700 1 _ |a Völzke, Henry
|0 0000-0001-7003-399X
|b 24
700 1 _ |a Nikolaou, Konstantin
|b 25
700 1 _ |a Schlett, Christopher L
|b 26
700 1 _ |a Bamberg, Fabian
|0 0000-0002-7460-3942
|b 27
700 1 _ |a Lescan, Mario
|b 28
700 1 _ |a Yang, Bin
|b 29
700 1 _ |a Küstner, Thomas
|b 30
700 1 _ |a Gatidis, Sergios
|b 31
773 _ _ |a 10.1093/ehjci/jeaf081
|g p. jeaf081
|0 PERI:(DE-600)2647943-6
|n 5
|p 895-907
|t European heart journal - cardiovascular imaging
|v 26
|y 2025
|x 2047-2404
909 C O |p VDB
|o oai:inrepo02.dkfz.de:299567
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 21
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR HEART J-CARD IMG : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR HEART J-CARD IMG : 2022
|d 2025-01-06
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21