000299581 001__ 299581
000299581 005__ 20250411111538.0
000299581 0247_ $$2doi$$a10.1021/acsnano.4c13599
000299581 0247_ $$2pmid$$apmid:40056466
000299581 0247_ $$2ISSN$$a1936-0851
000299581 0247_ $$2ISSN$$a1936-086X
000299581 0247_ $$2altmetric$$aaltmetric:175038970
000299581 037__ $$aDKFZ-2025-00522
000299581 041__ $$aEnglish
000299581 082__ $$a540
000299581 1001_ $$00000-0003-2741-7028$$aSalviano-Silva, Amanda$$b0
000299581 245__ $$aExtracellular Vesicles Carrying Tenascin-C are Clinical Biomarkers and Improve Tumor-Derived DNA Analysis in Glioblastoma Patients.
000299581 260__ $$aWashington, DC$$bSoc.$$c2025
000299581 3367_ $$2DRIVER$$aarticle
000299581 3367_ $$2DataCite$$aOutput Types/Journal article
000299581 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1744362889_25914
000299581 3367_ $$2BibTeX$$aARTICLE
000299581 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000299581 3367_ $$00$$2EndNote$$aJournal Article
000299581 500__ $$a2025 Mar 18;19(10):9844-9859
000299581 520__ $$aExtracellular vesicles (EVs) act as carriers of biological information from tumors to the bloodstream, enabling the detection of circulating tumor material and tracking of disease progression. This is particularly crucial in glioblastoma, a highly aggressive and heterogeneous tumor that is challenging to monitor. Using imaging flow cytometry (IFCM), we conducted an immunophenotyping analysis of eight glioma-associated antigens and tetraspanins in plasma EVs from 37 newly diagnosed glioblastoma patients (pre- and post-surgery), 11 matched individuals with recurrent glioblastoma, and 22 healthy donors (HD). Tenascin-C (TNC) positive EVs displayed the strongest differences in newly diagnosed and recurrent glioblastoma patients, when compared to non-tumor subjects. Among dual-positive subpopulations, TNC+/CD9+ EVs were the most elevated in newly diagnosed (FC = 7.6, p <0.0001, AUC = 81%) and recurrent patients (FC = 16.5, p <0.0001; AUC = 90%) than HD. In comparison with other CNS tumors (n = 25), this subpopulation was also 34.5-fold higher in glioblastoma than in meningioma cases (p <0.01). Additionally, TNC+/CD9+ EV levels were 3.3-fold elevated in cerebrospinal fluid from glioblastoma patients (n = 6) than controls (p <0.05). Aberrant TNC levels were further observed in glioblastoma EVs from different sources and purified via different methods. Immunohistochemical analysis revealed high levels of TNC in tumor tissues. Spatial transcriptomic analysis indicated a TNC overexpression in malignant cell populations of glioblastoma resections, particularly in cells with mesenchymal-like signatures and chromosomal aberrations. Lastly, we purified TNC+ EVs from plasma of 21 glioblastoma patients by magnetic sorting and detected the oncogenic mutation TERT*C228T by droplet digital PCR. The mutant allele frequency was higher in TNC+ EVs vs TNC-negative EVs (FC = 32, p <0.001), total EVs (FC = 5.3, p <0.001) or cell-free DNA (FC = 5.3, p <0.01). In conclusion, circulating TNC+ EVs may have potential as clinical biomarkers in glioblastoma, and their purification could improve the identification of tumor-specific mutations in liquid biopsies.
000299581 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000299581 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000299581 650_7 $$2Other$$aTenascin-C
000299581 650_7 $$2Other$$abiomarkers
000299581 650_7 $$2Other$$aextracellular vesicles
000299581 650_7 $$2Other$$aglioblastoma
000299581 650_7 $$2Other$$aliquid biopsy
000299581 7001_ $$aWollmann, Kathrin$$b1
000299581 7001_ $$aBrenna, Santra$$b2
000299581 7001_ $$aReimer, Rudolph$$b3
000299581 7001_ $$00000-0002-1162-8771$$aNeumann, Julia E$$b4
000299581 7001_ $$aDottermusch, Matthias$$b5
000299581 7001_ $$aWoythe, Laura$$b6
000299581 7001_ $$aMaire, Cecile L$$b7
000299581 7001_ $$aPuig, Berta$$b8
000299581 7001_ $$aSchüller, Ulrich$$b9
000299581 7001_ $$aSaul, Meike J$$b10
000299581 7001_ $$aWestphal, Manfred$$b11
000299581 7001_ $$aDrexler, Richard$$b12
000299581 7001_ $$aDührsen, Lasse$$b13
000299581 7001_ $$aGempt, Jens$$b14
000299581 7001_ $$0P:(DE-HGF)0$$aHeiland, Dieter H$$b15
000299581 7001_ $$aLamszus, Katrin$$b16
000299581 7001_ $$aRicklefs, Franz L$$b17
000299581 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.4c13599$$gp. acsnano.4c13599$$n10$$p9844-9859$$tACS nano$$v19$$x1936-0851$$y2025
000299581 909CO $$ooai:inrepo02.dkfz.de:299581$$pVDB
000299581 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000299581 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000299581 9141_ $$y2025
000299581 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
000299581 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
000299581 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
000299581 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
000299581 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
000299581 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
000299581 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
000299581 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2022$$d2025-01-07
000299581 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bACS NANO : 2022$$d2025-01-07
000299581 9201_ $$0I:(DE-He78)FR01-20160331$$kFR01$$lDKTK Koordinierungsstelle Freiburg$$x0
000299581 980__ $$ajournal
000299581 980__ $$aVDB
000299581 980__ $$aI:(DE-He78)FR01-20160331
000299581 980__ $$aUNRESTRICTED