000299585 001__ 299585
000299585 005__ 20250316015800.0
000299585 0247_ $$2doi$$a10.1016/j.cell.2025.01.038
000299585 0247_ $$2pmid$$apmid:40054445
000299585 0247_ $$2ISSN$$a0092-8674
000299585 0247_ $$2ISSN$$a1097-4172
000299585 0247_ $$2altmetric$$aaltmetric:174947127
000299585 037__ $$aDKFZ-2025-00526
000299585 041__ $$aEnglish
000299585 082__ $$a610
000299585 1001_ $$aTurjeman, Sondra$$b0
000299585 245__ $$aFrom big data and experimental models to clinical trials: Iterative strategies in microbiome research.
000299585 260__ $$a[Cambridge, Mass.]$$bCell Press$$c2025
000299585 3367_ $$2DRIVER$$aarticle
000299585 3367_ $$2DataCite$$aOutput Types/Journal article
000299585 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1741690353_25289$$xReview Article
000299585 3367_ $$2BibTeX$$aARTICLE
000299585 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000299585 3367_ $$00$$2EndNote$$aJournal Article
000299585 520__ $$aMicrobiome research has expanded significantly in the last two decades, yet translating findings into clinical applications remains challenging. This perspective discusses the persistent issue of correlational studies in microbiome research and proposes an iterative method leveraging in silico, in vitro, ex vivo, and in vivo studies toward successful preclinical and clinical trials. The evolution of research methodologies, including the shift from small cohort studies to large-scale, multi-cohort, and even 'meta-cohort' analyses, has been facilitated by advancements in sequencing technologies, providing researchers with tools to examine multiple health phenotypes within a single study. The integration of multi-omics approaches-such as metagenomics, metatranscriptomics, metaproteomics, and metabolomics-provides a comprehensive understanding of host-microbe interactions and serves as a robust hypothesis generator for downstream in vitro and in vivo research. These hypotheses must then be rigorously tested, first with proof-of-concept experiments to clarify the causative effects of the microbiota, and then with the goal of deep mechanistic understanding. Only following these two phases can preclinical studies be conducted with the goal of translation into the clinic. We highlight the importance of combining traditional microbiological techniques with big-data approaches, underscoring the necessity of iterative experiments in diverse model systems to enhance the translational potential of microbiome research.
000299585 536__ $$0G:(DE-HGF)POF4-314$$a314 - Immunologie und Krebs (POF4-314)$$cPOF4-314$$fPOF IV$$x0
000299585 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000299585 650_7 $$2Other$$aex vivo studies
000299585 650_7 $$2Other$$ahuman clinical trials
000299585 650_7 $$2Other$$ain vitro studies
000299585 650_7 $$2Other$$ain vivo studies
000299585 650_7 $$2Other$$aiterative research approaches
000299585 650_7 $$2Other$$ameta-cohorts
000299585 650_7 $$2Other$$amicrobiome
000299585 650_7 $$2Other$$apreclinical studies
000299585 650_2 $$2MeSH$$aMicrobiota
000299585 650_2 $$2MeSH$$aHumans
000299585 650_2 $$2MeSH$$aBig Data
000299585 650_2 $$2MeSH$$aAnimals
000299585 650_2 $$2MeSH$$aClinical Trials as Topic
000299585 650_2 $$2MeSH$$aMetagenomics: methods
000299585 650_2 $$2MeSH$$aMetabolomics: methods
000299585 7001_ $$aRozera, Tommaso$$b1
000299585 7001_ $$0P:(DE-He78)725ad944da4e1ea60389fe9dbbed2c7c$$aElinav, Eran$$b2$$udkfz
000299585 7001_ $$aIaniro, Gianluca$$b3
000299585 7001_ $$aKoren, Omry$$b4
000299585 773__ $$0PERI:(DE-600)2001951-8$$a10.1016/j.cell.2025.01.038$$gVol. 188, no. 5, p. 1178 - 1197$$n5$$p1178 - 1197$$tCell$$v188$$x0092-8674$$y2025
000299585 909CO $$ooai:inrepo02.dkfz.de:299585$$pVDB
000299585 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)725ad944da4e1ea60389fe9dbbed2c7c$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000299585 9131_ $$0G:(DE-HGF)POF4-314$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImmunologie und Krebs$$x0
000299585 9141_ $$y2025
000299585 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-01$$wger
000299585 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000299585 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
000299585 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000299585 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-01
000299585 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
000299585 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-01
000299585 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-01
000299585 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
000299585 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000299585 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL : 2022$$d2025-01-01
000299585 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-01
000299585 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-01
000299585 915__ $$0StatID:(DE-HGF)9960$$2StatID$$aIF >= 60$$bCELL : 2022$$d2025-01-01
000299585 9201_ $$0I:(DE-He78)D480-20160331$$kD480$$lMikrobiom und Krebs$$x0
000299585 980__ $$ajournal
000299585 980__ $$aVDB
000299585 980__ $$aI:(DE-He78)D480-20160331
000299585 980__ $$aUNRESTRICTED