000299782 001__ 299782
000299782 005__ 20250425105707.0
000299782 0247_ $$2doi$$a10.1002/mrm.30421
000299782 0247_ $$2pmid$$apmid:40079240
000299782 0247_ $$2ISSN$$a1522-2594
000299782 0247_ $$2ISSN$$a0740-3194
000299782 037__ $$aDKFZ-2025-00537
000299782 041__ $$aEnglish
000299782 082__ $$a610
000299782 1001_ $$00009-0001-0187-3941$$aFaust, Jonas Frederik$$b0
000299782 245__ $$aPositive susceptibility-based contrast imaging with dephased balanced steady-state free precession.
000299782 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2025
000299782 3367_ $$2DRIVER$$aarticle
000299782 3367_ $$2DataCite$$aOutput Types/Journal article
000299782 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745571366_23896
000299782 3367_ $$2BibTeX$$aARTICLE
000299782 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000299782 3367_ $$00$$2EndNote$$aJournal Article
000299782 500__ $$aVolume 94, Issue 1, July 2025 , Pages 59-72
000299782 520__ $$aDephasing gradients can be introduced within a variety of gradient-echo pulse sequences to delineate local susceptibility changes ('White-Marker' phenomenon), e.g., for the visualization of metallic interventional devices which are otherwise difficult to display. We investigated dephased balanced steady-state free precession (d-bSSFP) and compared it with similar contrast techniques: dephased RF-spoiled fast low-angle shot (d-FLASH) and dephased steady-state free precession (d-SSFP).A signal model was formulated to describe the positive contrast in d-bSSFP. For the example of an MR-compatible aspiration needle, the positive contrast artifact appearance was theoretically derived, and the model was verified in a water phantom at B0 = 0.55 T. Model accuracy was evaluated by comparing the measured artifact size (for TEs between 3.4 ms and 50 ms) and the signal magnitude to the model prediction.While positive contrast artifacts for d-FLASH and d-SSFP are axisymmetric with respect to the generating object, for d-bSSFP, a point-symmetric susceptibility artifact arises for a cylindrical needle due to the characteristic signal formation. The observed d-bSSFP artifact size was in accordance with the model (error < 1 mm). Measured (predicted) cumulated artifact signal was 1.13 ± 0.07 (1.27) times higher and 5.9 ± 0.4 times higher than the d-SSFP and d-FLASH cumulated artifact signal, respectively. In contrast to d-SSFP, the d-bSSFP artifact was robust against banding artifacts.d-bSSFP contrast is well described by the introduced model. Positive contrast artifacts show higher cumulated signal magnitude, symmetry, and homogeneity compared with d-FLASH and d-SSFP and can therefore improve device visualization and potentially device localization.
000299782 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000299782 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000299782 650_7 $$2Other$$abSSFP
000299782 650_7 $$2Other$$adephased MRI
000299782 650_7 $$2Other$$ainterventional MRI
000299782 650_7 $$2Other$$apositive contrast
000299782 650_7 $$2Other$$awhite‐marker imaging
000299782 7001_ $$00000-0003-0449-1145$$aSpeier, Peter$$b1
000299782 7001_ $$aKrafft, Axel Joachim$$b2
000299782 7001_ $$00009-0004-2686-8227$$aPatil, Sunil$$b3
000299782 7001_ $$00000-0002-2719-6854$$aSeethamraju, Ravi Teja$$b4
000299782 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark$$b5$$udkfz
000299782 7001_ $$aMaier, Florian$$b6
000299782 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.30421$$gp. mrm.30421$$n1$$p59-72$$tMagnetic resonance in medicine$$v94$$x1522-2594$$y2025
000299782 909CO $$ooai:inrepo02.dkfz.de:299782$$pVDB
000299782 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000299782 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000299782 9141_ $$y2025
000299782 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
000299782 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-02$$wger
000299782 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000299782 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000299782 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000299782 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000299782 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000299782 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000299782 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000299782 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-02
000299782 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000299782 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000299782 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000299782 980__ $$ajournal
000299782 980__ $$aVDB
000299782 980__ $$aI:(DE-He78)E020-20160331
000299782 980__ $$aUNRESTRICTED