Home > Publications database > Positive susceptibility-based contrast imaging with dephased balanced steady-state free precession. > print |
001 | 299782 | ||
005 | 20250425105707.0 | ||
024 | 7 | _ | |a 10.1002/mrm.30421 |2 doi |
024 | 7 | _ | |a pmid:40079240 |2 pmid |
024 | 7 | _ | |a 1522-2594 |2 ISSN |
024 | 7 | _ | |a 0740-3194 |2 ISSN |
037 | _ | _ | |a DKFZ-2025-00537 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Faust, Jonas Frederik |0 0009-0001-0187-3941 |b 0 |
245 | _ | _ | |a Positive susceptibility-based contrast imaging with dephased balanced steady-state free precession. |
260 | _ | _ | |a New York, NY [u.a.] |c 2025 |b Wiley-Liss |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1745571366_23896 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Volume 94, Issue 1, July 2025 , Pages 59-72 |
520 | _ | _ | |a Dephasing gradients can be introduced within a variety of gradient-echo pulse sequences to delineate local susceptibility changes ('White-Marker' phenomenon), e.g., for the visualization of metallic interventional devices which are otherwise difficult to display. We investigated dephased balanced steady-state free precession (d-bSSFP) and compared it with similar contrast techniques: dephased RF-spoiled fast low-angle shot (d-FLASH) and dephased steady-state free precession (d-SSFP).A signal model was formulated to describe the positive contrast in d-bSSFP. For the example of an MR-compatible aspiration needle, the positive contrast artifact appearance was theoretically derived, and the model was verified in a water phantom at B0 = 0.55 T. Model accuracy was evaluated by comparing the measured artifact size (for TEs between 3.4 ms and 50 ms) and the signal magnitude to the model prediction.While positive contrast artifacts for d-FLASH and d-SSFP are axisymmetric with respect to the generating object, for d-bSSFP, a point-symmetric susceptibility artifact arises for a cylindrical needle due to the characteristic signal formation. The observed d-bSSFP artifact size was in accordance with the model (error < 1 mm). Measured (predicted) cumulated artifact signal was 1.13 ± 0.07 (1.27) times higher and 5.9 ± 0.4 times higher than the d-SSFP and d-FLASH cumulated artifact signal, respectively. In contrast to d-SSFP, the d-bSSFP artifact was robust against banding artifacts.d-bSSFP contrast is well described by the introduced model. Positive contrast artifacts show higher cumulated signal magnitude, symmetry, and homogeneity compared with d-FLASH and d-SSFP and can therefore improve device visualization and potentially device localization. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a bSSFP |2 Other |
650 | _ | 7 | |a dephased MRI |2 Other |
650 | _ | 7 | |a interventional MRI |2 Other |
650 | _ | 7 | |a positive contrast |2 Other |
650 | _ | 7 | |a white‐marker imaging |2 Other |
700 | 1 | _ | |a Speier, Peter |0 0000-0003-0449-1145 |b 1 |
700 | 1 | _ | |a Krafft, Axel Joachim |b 2 |
700 | 1 | _ | |a Patil, Sunil |0 0009-0004-2686-8227 |b 3 |
700 | 1 | _ | |a Seethamraju, Ravi Teja |0 0000-0002-2719-6854 |b 4 |
700 | 1 | _ | |a Ladd, Mark |0 P:(DE-He78)022611a2317e4de40fd912e0a72293a8 |b 5 |u dkfz |
700 | 1 | _ | |a Maier, Florian |b 6 |
773 | _ | _ | |a 10.1002/mrm.30421 |g p. mrm.30421 |0 PERI:(DE-600)1493786-4 |n 1 |p 59-72 |t Magnetic resonance in medicine |v 94 |y 2025 |x 1522-2594 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:299782 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)022611a2317e4de40fd912e0a72293a8 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2025-01-02 |w ger |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2025-01-02 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2025-01-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
920 | 1 | _ | |0 I:(DE-He78)E020-20160331 |k E020 |l E020 Med. Physik in der Radiologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|