TY  - JOUR
AU  - Schilling, Alexander
AU  - Aehle, Max
AU  - Alme, Johan
AU  - Barnaföldi, Gergely Gábor
AU  - Bíró, Gábor
AU  - Bodova, Tea
AU  - Borshchov, Vyacheslav
AU  - van den Brink, Anthony
AU  - Eikeland, Viljar Nilsen
AU  - Feofilov, Grigori
AU  - Garth, Christoph
AU  - Gauger, Nicolas R
AU  - Grøttvik, Ola Slettevoll
AU  - Helstrup, Håvard
AU  - Igolkin, Sergey
AU  - Johansen, Jacob Graversen
AU  - Keidel, Ralf
AU  - Kobdaj, Chinorat
AU  - Kortus, Tobias
AU  - Leonhardt, Viktor
AU  - Mehendale, Shruti
AU  - Mulawade, Raju Ningappa
AU  - Odland, Odd Harald
AU  - O'Neill, George
AU  - Papp, Gábor
AU  - Peitzmann, Thomas
AU  - Pettersen, Helge Egil Seime
AU  - Piersimoni, Pierluigi
AU  - Protsenko, Maksym
AU  - Rauch, Max
AU  - Rehman, Attiq Ur
AU  - Richter, Matthias
AU  - Röhrich, Dieter
AU  - Santana, Joshua
AU  - Seco, Joao
AU  - Songmoolnak, Arnon
AU  - Sudár, Ákos
AU  - Tambave, Ganesh
AU  - Tymchuk, Ihor
AU  - Ullaland, Kjetil
AU  - Varga-Kőfaragó, Mónika
AU  - Wagner, Boris
AU  - Xiao, RenZheng
AU  - Yang, Shiming
TI  - Modeling Charge Collection in Silicon Pixel Detectors for Proton Therapy Applications.
JO  - Biomedical physics & engineering express
VL  - 11
IS  - 3
SN  - 2057-1976
CY  - Bristol
PB  - IOP Publ.
M1  - DKFZ-2025-00542
SP  - 035005 
PY  - 2025
N1  - Biomed. Phys. Eng. Express 11 (2025) 035005 
AB  - Objective.Monolithic active pixel sensors are used for charged particle tracking in many applications, from medical physics to astrophysics. The Bergen pCT collaboration designed a sampling calorimeter for proton computed tomography, based entirely on the ALICE PIxel DEtector (ALPIDE). The same telescope can be used for in-situ range verification in particle therapy. An accurate charge diffusion model is required to convert the deposited energy from Monte Carlo simulations to a cluster of pixels, and to estimate the deposited energy, given an experimentally observed cluster.Approach.We optimize the parameters of different charge diffusion models to experimental data for both proton computed tomography and proton range verification, collected at the Danish Centre for Particle Therapy. We then evaluate the performance of downstream tasks to investigate the impact of charge diffusion modeling.Main results.We find that it is beneficial to optimize application-specific models, with a power law working best for proton computed tomography, and a model based on a 2D Cauchy-Lorentz distribution giving better agreement for range verification. We further highlight the importance of evaluating the downstream tasks with multiple approaches to obtain a range of expected performance metrics for the application.Significance.This work demonstrates the influence of the charge diffusion model on downstream tasks, and recommends a new model for proton range verification with an ALPIDE-based pixel telescope.
KW  - charge diffusion (Other)
KW  - monolithic active pixel sensor (Other)
KW  - proton computed tomography (Other)
KW  - proton therapy (Other)
KW  - range verification (Other)
LB  - PUB:(DE-HGF)16
C6  - pmid:40073455
DO  - DOI:10.1088/2057-1976/adbf9c
UR  - https://inrepo02.dkfz.de/record/299787
ER  -