001     299787
005     20250325134139.0
024 7 _ |a 10.1088/2057-1976/adbf9c
|2 doi
024 7 _ |a pmid:40073455
|2 pmid
037 _ _ |a DKFZ-2025-00542
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Schilling, Alexander
|0 0000-0001-8802-3247
|b 0
245 _ _ |a Modeling Charge Collection in Silicon Pixel Detectors for Proton Therapy Applications.
260 _ _ |a Bristol
|c 2025
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1742906452_14573
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Biomed. Phys. Eng. Express 11 (2025) 035005
520 _ _ |a Objective.Monolithic active pixel sensors are used for charged particle tracking in many applications, from medical physics to astrophysics. The Bergen pCT collaboration designed a sampling calorimeter for proton computed tomography, based entirely on the ALICE PIxel DEtector (ALPIDE). The same telescope can be used for in-situ range verification in particle therapy. An accurate charge diffusion model is required to convert the deposited energy from Monte Carlo simulations to a cluster of pixels, and to estimate the deposited energy, given an experimentally observed cluster.Approach.We optimize the parameters of different charge diffusion models to experimental data for both proton computed tomography and proton range verification, collected at the Danish Centre for Particle Therapy. We then evaluate the performance of downstream tasks to investigate the impact of charge diffusion modeling.Main results.We find that it is beneficial to optimize application-specific models, with a power law working best for proton computed tomography, and a model based on a 2D Cauchy-Lorentz distribution giving better agreement for range verification. We further highlight the importance of evaluating the downstream tasks with multiple approaches to obtain a range of expected performance metrics for the application.Significance.This work demonstrates the influence of the charge diffusion model on downstream tasks, and recommends a new model for proton range verification with an ALPIDE-based pixel telescope.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a charge diffusion
|2 Other
650 _ 7 |a monolithic active pixel sensor
|2 Other
650 _ 7 |a proton computed tomography
|2 Other
650 _ 7 |a proton therapy
|2 Other
650 _ 7 |a range verification
|2 Other
700 1 _ |a Aehle, Max
|0 0000-0002-6739-5890
|b 1
700 1 _ |a Alme, Johan
|b 2
700 1 _ |a Barnaföldi, Gergely Gábor
|b 3
700 1 _ |a Bíró, Gábor
|0 0000-0003-2849-0120
|b 4
700 1 _ |a Bodova, Tea
|b 5
700 1 _ |a Borshchov, Vyacheslav
|b 6
700 1 _ |a van den Brink, Anthony
|0 0000-0003-2366-7257
|b 7
700 1 _ |a Eikeland, Viljar Nilsen
|b 8
700 1 _ |a Feofilov, Grigori
|b 9
700 1 _ |a Garth, Christoph
|b 10
700 1 _ |a Gauger, Nicolas R
|b 11
700 1 _ |a Grøttvik, Ola Slettevoll
|b 12
700 1 _ |a Helstrup, Håvard
|b 13
700 1 _ |a Igolkin, Sergey
|b 14
700 1 _ |a Johansen, Jacob Graversen
|0 0000-0001-8475-0447
|b 15
700 1 _ |a Keidel, Ralf
|0 0000-0002-1474-6191
|b 16
700 1 _ |a Kobdaj, Chinorat
|0 0009-0000-8890-9101
|b 17
700 1 _ |a Kortus, Tobias
|b 18
700 1 _ |a Leonhardt, Viktor
|b 19
700 1 _ |a Mehendale, Shruti
|b 20
700 1 _ |a Mulawade, Raju Ningappa
|b 21
700 1 _ |a Odland, Odd Harald
|b 22
700 1 _ |a O'Neill, George
|b 23
700 1 _ |a Papp, Gábor
|b 24
700 1 _ |a Peitzmann, Thomas
|b 25
700 1 _ |a Pettersen, Helge Egil Seime
|0 0000-0003-4879-771X
|b 26
700 1 _ |a Piersimoni, Pierluigi
|b 27
700 1 _ |a Protsenko, Maksym
|b 28
700 1 _ |a Rauch, Max
|b 29
700 1 _ |a Rehman, Attiq Ur
|b 30
700 1 _ |a Richter, Matthias
|b 31
700 1 _ |a Röhrich, Dieter
|b 32
700 1 _ |a Santana, Joshua
|b 33
700 1 _ |a Seco, Joao
|0 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
|b 34
|u dkfz
700 1 _ |a Songmoolnak, Arnon
|0 0000-0003-4234-1914
|b 35
700 1 _ |a Sudár, Ákos
|0 0000-0001-6529-1636
|b 36
700 1 _ |a Tambave, Ganesh
|b 37
700 1 _ |a Tymchuk, Ihor
|b 38
700 1 _ |a Ullaland, Kjetil
|b 39
700 1 _ |a Varga-Kőfaragó, Mónika
|b 40
700 1 _ |a Wagner, Boris
|b 41
700 1 _ |a Xiao, RenZheng
|b 42
700 1 _ |a Yang, Shiming
|b 43
773 _ _ |a 10.1088/2057-1976/adbf9c
|0 PERI:(DE-600)2844309-3
|n 3
|p 035005
|t Biomedical physics & engineering express
|v 11
|y 2025
|x 2057-1976
909 C O |p VDB
|o oai:inrepo02.dkfz.de:299787
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 34
|6 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-17
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOMED PHYS ENG EXPR : 2022
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-17
920 1 _ |0 I:(DE-He78)E041-20160331
|k E041
|l Med. Physik in der Radioonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E041-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21