000299796 001__ 299796
000299796 005__ 20250610143223.0
000299796 0247_ $$2doi$$a10.1002/mp.17754
000299796 0247_ $$2pmid$$apmid:40066823
000299796 0247_ $$2ISSN$$a0094-2405
000299796 0247_ $$2ISSN$$a1522-8541
000299796 0247_ $$2ISSN$$a2473-4209
000299796 037__ $$aDKFZ-2025-00551
000299796 041__ $$aEnglish
000299796 082__ $$a610
000299796 1001_ $$0P:(DE-HGF)0$$aFreitas, Hugo$$b0$$eFirst author
000299796 245__ $$aA comparative analysis of GEANT4, MCNP6 and FLUKA on proton-induced gamma-ray simulation.
000299796 260__ $$aHoboken, NJ$$bWiley$$c2025
000299796 3367_ $$2DRIVER$$aarticle
000299796 3367_ $$2DataCite$$aOutput Types/Journal article
000299796 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1749558705_8605
000299796 3367_ $$2BibTeX$$aARTICLE
000299796 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000299796 3367_ $$00$$2EndNote$$aJournal Article
000299796 500__ $$a#EA:E041#LA:E041# / 2025 Jun;52(6):4862-4870
000299796 520__ $$aPrecise range verification is essential in proton therapy to minimize treatment margins due to the steep dose fall-off of proton beams. The emission of secondary radiation from nuclear reactions between incident particles and tissues stands out as a promising method for range verification. Two prominent techniques are PET and Prompt Gamma-Ray Spectroscopy (PGS). PGS holds significant promise due to its real-time capability for range monitoring. This method allows for prompt detection and quantification of any disparities between planned and actual dose delivery, facilitating adaptive treatment strategies. Given the key role of Monte Carlo (MC) codes in understanding the PGS mechanisms during proton therapy, it is essential to address the current lack of validated codes covering the full energy spectrum of emitted gamma-rays.Addressing the need for precise range monitoring in proton therapy, our study aims to develop and validate MC codes for PGS. We focus on analyse MCNP6, GEANT4, and FLUKA codes, conducting rigorous validation process by comparing our simulation results with experimental data. Additionally, we propose optimal models and parameters to refine the accuracy of simulations for prompt gamma-ray (PG) spectra.Various proton data libraries, models and cross-sections values were used in this study to simulate proton-induced gamma-rays in MCNP6, GEANT4 and FLUKA. To validate these simulations, PGS spectra of 15.0 cm 3 $15.0 \,{\rm cm}^{3}$ PMMA block irradiation were obtained with CeBr 3 ${\rm CeBr}_3$ inorganic scintillator detector for different proton energies, raging from approximately 90 $\hskip.001pt 90$ to 130 MeV $130 \,{\rm MeV}$ .GEANT4 was the only MC code capable of successfully reproducing 10 B $^{10}{\rm B}$ PG lines, while the FLUKA aligned better with experimental data for mid-range energies. At higher energies, FLUKA overestimated the 12 C $^{12}{\rm C}$ PG line ( 2 + → 0 + $2^{+} \rightarrow 0^{+}$ ) at 4.44 MeV $4.44 \,{\rm MeV}$ , whereas GEANT4 underestimated it; MCNP6 provided the closest match. Additionally, GEANT4, FLUKA, and MCNP6 failed to accurately reproduce the 16 O $^{16}{\rm O}$ PG line ( 3 - → 0 + $3^{-} \rightarrow 0^{+}$ ) at 6.13 MeV $6.13 \,{\rm MeV}$ , consistent with previous findings. To address this limitation, a new model based on experimental and theoretical data from literature was developed.This study emphasizes the need for updates to the data tables in MC simulations and underscores the importance of further theoretical and experimental research on PG de-excitation lines relevant to proton therapy. The newly developed model, designed to address discrepancies in the simulation of 12 C $^{12}{\rm C}$ and 16 O $^{16}{\rm O}$ de-excitation lines across different toolkits, successfully improved the accuracy of the oxygen de-excitation line, which was previously not well-reproduced.
000299796 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000299796 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000299796 650_7 $$2Other$$aFLUKA
000299796 650_7 $$2Other$$aGEANT4
000299796 650_7 $$2Other$$aMCNP6
000299796 650_7 $$2Other$$aMonte Carlo simulations
000299796 650_7 $$2Other$$aprompt gamma‐ray spectroscopy
000299796 7001_ $$0P:(DE-He78)a09d7e58731c0c38196a3cea73772f8f$$aNobakht, Esmaeil$$b1$$udkfz
000299796 7001_ $$aGrüner, Florian$$b2
000299796 7001_ $$0P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aSeco, Joao$$b3$$eLast author$$udkfz
000299796 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.17754$$gp. mp.17754$$n6$$p4862-4870$$tMedical physics$$v52$$x0094-2405$$y2025
000299796 909CO $$ooai:inrepo02.dkfz.de:299796$$pVDB
000299796 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000299796 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a09d7e58731c0c38196a3cea73772f8f$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000299796 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000299796 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000299796 9141_ $$y2025
000299796 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-13$$wger
000299796 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000299796 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000299796 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000299796 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
000299796 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
000299796 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-13
000299796 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
000299796 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000299796 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2022$$d2024-12-13
000299796 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
000299796 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
000299796 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-13
000299796 9202_ $$0I:(DE-He78)E041-20160331$$kE041$$lMed. Physik in der Radioonkologie$$x0
000299796 9201_ $$0I:(DE-He78)E041-20160331$$kE041$$lMed. Physik in der Radioonkologie$$x0
000299796 9200_ $$0I:(DE-He78)E041-20160331$$kE041$$lMed. Physik in der Radioonkologie$$x0
000299796 980__ $$ajournal
000299796 980__ $$aVDB
000299796 980__ $$aI:(DE-He78)E041-20160331
000299796 980__ $$aUNRESTRICTED