000299845 001__ 299845
000299845 005__ 20250319113715.0
000299845 0247_ $$2doi$$a10.1016/j.drup.2025.101224
000299845 0247_ $$2pmid$$apmid:40058099
000299845 0247_ $$2ISSN$$a1368-7646
000299845 0247_ $$2ISSN$$a1532-2084
000299845 037__ $$aDKFZ-2025-00581
000299845 041__ $$aEnglish
000299845 082__ $$a610
000299845 1001_ $$aZhang, Zhongyan$$b0
000299845 245__ $$aDTX2 attenuates Lenvatinib-induced ferroptosis by suppressing docosahexaenoic acid biosynthesis through HSD17B4-dependent peroxisomal β-oxidation in hepatocellular carcinoma.
000299845 260__ $$aOxford$$bElsevier$$c2025
000299845 3367_ $$2DRIVER$$aarticle
000299845 3367_ $$2DataCite$$aOutput Types/Journal article
000299845 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1742376752_25275
000299845 3367_ $$2BibTeX$$aARTICLE
000299845 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000299845 3367_ $$00$$2EndNote$$aJournal Article
000299845 500__ $$a#EA:B440#
000299845 520__ $$aEmerging resistance to Lenvatinib, which is used as a first-line agent for the treatment of advanced hepatocellular carcinoma (HCC), is still a concern. The aim of this study was to determine core factors of Lenvatinib resistance (LR) and their underlying molecular mechanisms.CRISPR screening in HCC cells was conducted, which identified E3 ubiquitin ligase deltex 2 (DTX2) as a core LR-related gene. In vivo and in vitro models were used to clarify the function of DTX2 on LR and ferroptosis. The upstream regulators and downstream effectors of DTX2 were identified, revealing its complex regulatory network.DTX2 promoted anti-ferroptosis in LR HCC cells via downregulating the peroxisomal β-oxidation enzyme HSD17B4. DTX2 induced the ubiquitination-mediated degradation of HSD17B4, resulting in lipid metabolism changes that were associated mainly with docosahexaenoic acid (DHA)-containing PUFAs. Notably, DHA supplements could reverse DTX2-induced anti-ferroptosis and LR. Mechanistically, we uncovered that DTX2 ubiquitinated the HSD17B4 SCP structural domain through its RING structural domain and ubiquitinated the K645 site. The upregulation of DTX2 expression was mediated by JAK2-STAT3 pathway activation. The aberrant activation of STAT3 in acquired LR promoted DTX2 transcription and negatively regulated peroxisomal β-oxidation via K48-ubiquitinated HSD17B4 and decreased DHA-phospholipids levels, leading to the suppression of Lenvatinib-induced ferroptosis in HCC.Our findings suggest that DTX2 attenuates Lenvatinib-induced ferroptosis by inhibiting DHA biosynthesis through HSD17B4-dependent peroxisomal β-oxidation in HCC. The combination of DHA with Lenvatinib could be a promising therapeutic strategy for patients with LR HCC.
000299845 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000299845 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000299845 650_7 $$2Other$$aDTX2
000299845 650_7 $$2Other$$aFerroptosis
000299845 650_7 $$2Other$$aHSD17B4
000299845 650_7 $$2Other$$aLenvatinib resistance
000299845 650_7 $$2Other$$aPeroxisomal β-oxidation
000299845 7001_ $$aZhou, Qi$$b1
000299845 7001_ $$0P:(DE-He78)e4252c07d7a2feedcb6c943766b7c84c$$aLi, Zhenchong$$b2$$eFirst author$$udkfz
000299845 7001_ $$aHuang, Fuxin$$b3
000299845 7001_ $$aMo, Ke$$b4
000299845 7001_ $$aShen, Cheng$$b5
000299845 7001_ $$aNiu, Xing$$b6
000299845 7001_ $$aHou, Baohua$$b7
000299845 7001_ $$aZhang, Chuanzhao$$b8
000299845 7001_ $$aHuang, Shanzhou$$b9
000299845 773__ $$0PERI:(DE-600)2002582-8$$a10.1016/j.drup.2025.101224$$gVol. 81, p. 101224 -$$p101224$$tDrug resistance updates$$v81$$x1368-7646$$y2025
000299845 909CO $$ooai:inrepo02.dkfz.de:299845$$pVDB
000299845 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-05$$wger
000299845 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
000299845 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
000299845 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
000299845 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-05
000299845 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-05
000299845 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-05
000299845 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2024-12-05
000299845 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-05
000299845 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
000299845 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDRUG RESIST UPDATE : 2022$$d2024-12-05
000299845 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bDRUG RESIST UPDATE : 2022$$d2024-12-05
000299845 9141_ $$y2025
000299845 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e4252c07d7a2feedcb6c943766b7c84c$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000299845 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000299845 9200_ $$0I:(DE-He78)B440-20160331$$kB440$$lNWG-KKE Translationale Gastrointestinale Onkologie und präklinische Modelle$$x0
000299845 9201_ $$0I:(DE-He78)B440-20160331$$kB440$$lNWG-KKE Translationale Gastrointestinale Onkologie und präklinische Modelle$$x0
000299845 980__ $$ajournal
000299845 980__ $$aVDB
000299845 980__ $$aI:(DE-He78)B440-20160331
000299845 980__ $$aUNRESTRICTED