000300109 001__ 300109
000300109 005__ 20250326112401.0
000300109 0247_ $$2doi$$a10.1186/s12871-025-02980-9
000300109 0247_ $$2pmid$$apmid:40097954
000300109 0247_ $$2pmc$$apmc:PMC11912595
000300109 037__ $$aDKFZ-2025-00607
000300109 041__ $$aEnglish
000300109 082__ $$a610
000300109 1001_ $$aNguyen, Xuan Duc$$b0
000300109 245__ $$aSuppressive effects of deep balanced anesthesia on cellular immunity and protein expression: a randomized-controlled pilot study.
000300109 260__ $$a[Erscheinungsort nicht ermittelbar]$$bBioMed Central$$c2025
000300109 3367_ $$2DRIVER$$aarticle
000300109 3367_ $$2DataCite$$aOutput Types/Journal article
000300109 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1742899592_13845
000300109 3367_ $$2BibTeX$$aARTICLE
000300109 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000300109 3367_ $$00$$2EndNote$$aJournal Article
000300109 500__ $$aFunctional Proteome Analysis, German Cancer Research Center(DKFZ), Heidelberg 69120, Germany
000300109 520__ $$aIt is questionable whether or not a short period of deep anesthesia can have long lasting effects on immune suppression.To analyze specific effects of deep anesthesia on immune modulation, a randomized-controlled, single-blinded study, monocentric, pilot-study was conducted at a level 1 orthopedic and trauma center. Inclusion criteria were patients scheduled for extended shoulder surgery with an ASA score between 1 to 3 (n = 186). Patients on immune modulating drugs or with immune deficits were excluded. The remaining patients were enrolled and randomized to either deep or light anesthesia (n = 18). Patient were randomized to receive either deep anesthesia or light anesthesia for 60 min or longer. The primary aim of the study was to compare cellular activity of T-cells, NK-cells and monocytes after anesthesia. Phagocytosis and cellular lysis activity of neutrophils and monocytes were analyzed by flow cytometry. Secondly, we analyzed anesthesia induced protein expresssion pattern in human monocytes by a standardized proteomic approach, implicating quantitative two-dimensional (2D) differential gel electrophoresis and Delta2D software analyses coupled with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and Mascot analysis.Anesthesia duration was 109 min in the deep anesthesia group with 81 ± 17 min of BIS < 45 and a mean BIS of 38 ± 14. The light anesthesia group received anesthesia for 111 min with 13 ± 8 min of BIS < 45 and a mean BIS 56 ± 8. Cytotoxic T-cells decreased fivefold in the light anesthesia group compared to the deep anesthesia group (-28 ± 13% vs. -6 ± 18%, respectively). The number of NK-cells (p = 0.0127) and regulatory T-cells (p = 0.0217) both dropped after deep anesthesia to almost half of the plasma level. Phagocytosis activity of neutrophils and monocytes was constant with a 67% decreased trend of intracellular lysis in monocytes (p = 0.0625). Quantitative proteomic analyses revealed 27 anesthesia-regulated protein spots in human monocytes, 14 of which were significantly identified by MALDI-MS, and were related to processes such as macrophage function and lymphocyte proliferation, tumor progression and apoptosis.Deep anesthesia inhibited immune competent defense cells (killer cells and regulatory T-cells) and had a general suppression on the phagocytic function of all circulating immune competent cells.Clinicaltrial.gov identifier: NCT02794896.
000300109 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000300109 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000300109 650_7 $$2Other$$aAnesthesia depth
000300109 650_7 $$2Other$$aCellular immune response
000300109 650_7 $$2Other$$aLymphocyte proliferation
000300109 650_7 $$2Other$$aMonocyte proteome
000300109 650_7 $$2Other$$aNK-cells
000300109 650_2 $$2MeSH$$aHumans
000300109 650_2 $$2MeSH$$aPilot Projects
000300109 650_2 $$2MeSH$$aMale
000300109 650_2 $$2MeSH$$aFemale
000300109 650_2 $$2MeSH$$aMiddle Aged
000300109 650_2 $$2MeSH$$aSingle-Blind Method
000300109 650_2 $$2MeSH$$aImmunity, Cellular: drug effects
000300109 650_2 $$2MeSH$$aAdult
000300109 650_2 $$2MeSH$$aMonocytes: metabolism
000300109 650_2 $$2MeSH$$aMonocytes: drug effects
000300109 650_2 $$2MeSH$$aMonocytes: immunology
000300109 650_2 $$2MeSH$$aKiller Cells, Natural: drug effects
000300109 650_2 $$2MeSH$$aKiller Cells, Natural: immunology
000300109 650_2 $$2MeSH$$aPhagocytosis: drug effects
000300109 650_2 $$2MeSH$$aAged
000300109 650_2 $$2MeSH$$aProteomics: methods
000300109 650_2 $$2MeSH$$aT-Lymphocytes: immunology
000300109 650_2 $$2MeSH$$aT-Lymphocytes: drug effects
000300109 650_2 $$2MeSH$$aNeutrophils: drug effects
000300109 650_2 $$2MeSH$$aNeutrophils: metabolism
000300109 650_2 $$2MeSH$$aSpectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization: methods
000300109 7001_ $$aHorn, Audrey$$b1
000300109 7001_ $$aFischer, Dania$$b2
000300109 7001_ $$aBeck, Grietje$$b3
000300109 7001_ $$aSpannenberger, Cora C$$b4
000300109 7001_ $$aGaudilliere, Brice$$b5
000300109 7001_ $$aHorn, Jean-Louis$$b6
000300109 7001_ $$0P:(DE-HGF)0$$aThierse, Hermann-Josef$$b7
000300109 7001_ $$aFrietsch, Thomas$$b8
000300109 773__ $$0PERI:(DE-600)2091252-3$$a10.1186/s12871-025-02980-9$$gVol. 25, no. 1, p. 129$$n1$$p129$$tBMC anesthesiology$$v25$$x1471-2253$$y2025
000300109 909CO $$ooai:inrepo02.dkfz.de:300109$$pVDB
000300109 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000300109 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000300109 9141_ $$y2025
000300109 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC ANESTHESIOL : 2022$$d2024-12-14
000300109 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-14
000300109 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-14
000300109 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:34:04Z
000300109 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:34:04Z
000300109 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2024-04-10T15:34:04Z
000300109 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-14
000300109 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-14
000300109 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-14
000300109 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-14
000300109 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-14
000300109 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-14
000300109 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-14
000300109 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-14
000300109 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-14
000300109 9201_ $$0I:(DE-He78)B100-20160331$$kB100$$lFunktionelle Proteomanalyse$$x0
000300109 980__ $$ajournal
000300109 980__ $$aVDB
000300109 980__ $$aI:(DE-He78)B100-20160331
000300109 980__ $$aUNRESTRICTED