001     300113
005     20260209101825.0
024 7 _ |a 10.1016/j.zemedi.2025.02.005
|2 doi
024 7 _ |a pmid:40122750
|2 pmid
024 7 _ |a 0939-3889
|2 ISSN
024 7 _ |a 1876-4436
|2 ISSN
037 _ _ |a DKFZ-2025-00611
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Haueise, Tobias
|b 0
245 _ _ |a Refining visceral adipose tissue quantification: Influence of sex, age, and BMI on single slice estimation in 3D MRI of the German National Cohort.
260 _ _ |a Amsterdam [u.a.]
|c 2026
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770628668_645158
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2026 Feb;36(1):114-124
520 _ _ |a High prevalence of visceral obesity and its associated complications underscore the importance of accurately quantifying visceral adipose tissue (VAT) depots. While whole-body MRI offers comprehensive insights into adipose tissue distribution, it is resource-intensive. Alternatively, evaluation of defined single slices provides an efficient approach for estimation of total VAT volume. This study investigates the influence of sex-, age-, and BMI on VAT distribution along the craniocaudal axis and total VAT volume obtained from single slice versus volumetric assessment in 3D MRI and aims to identify age-independent locations for accurate estimation of VAT volume from single slice assessment.This secondary analysis of the prospective population-based German National Cohort (NAKO) included 3D VIBE Dixon MRI from 11,191 participants (screened between May 2014 and December 2016). VAT and spine segmentations were automatically generated using fat-selective images. Standardized craniocaudal VAT profiles were generated. Axial percentage of total VAT was used for identification of reference locations for volume estimation of VAT from a single slice.Data from 11,036 participants (mean age, 52 ± 11 years, 5681 men) were analyzed. Craniocaudal VAT distribution differed qualitatively between men/women and with respect to age/BMI. Age-independent single slice VAT estimates demonstrated strong correlations with reference VAT volumes. Anatomical locations for accurate VAT estimation varied with sex/BMI.The selection of reference locations should be different depending on BMI groups, with a preference for caudal shifts in location with increasing BMI. For women with obesity (BMI >30 kg/m2), the L1 level emerges as the optimal reference location.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Deep learning
|2 Other
650 _ 7 |a Magnetic resonance imaging
|2 Other
650 _ 7 |a Obesity
|2 Other
650 _ 7 |a Single slice quantification
|2 Other
650 _ 7 |a Visceral adipose tissue
|2 Other
700 1 _ |a Schick, Fritz
|b 1
700 1 _ |a Stefan, Norbert
|b 2
700 1 _ |a Grune, Elena
|b 3
700 1 _ |a von Itter, Marc-Nicolas
|b 4
700 1 _ |a Kauczor, Hans-Ulrich
|b 5
700 1 _ |a Nattenmüller, Johanna
|b 6
700 1 _ |a Norajitra, Tobias
|0 P:(DE-He78)a70f21a2bf78bbc1306c3d432ae08dc7
|b 7
|u dkfz
700 1 _ |a Nonnenmacher, Tobias
|b 8
700 1 _ |a Rospleszcz, Susanne
|b 9
700 1 _ |a Maier-Hein, Klaus H
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 10
|u dkfz
700 1 _ |a Schlett, Christopher L
|b 11
700 1 _ |a Weiss, Jakob B
|b 12
700 1 _ |a Fischer, Beate
|b 13
700 1 _ |a Jöckel, Karl-Heinz
|b 14
700 1 _ |a Krist, Lilian
|b 15
700 1 _ |a Niendorf, Thoralf
|b 16
700 1 _ |a Peters, Annette
|b 17
700 1 _ |a Sedlmeier, Anja M
|b 18
700 1 _ |a Willich, Stefan N
|b 19
700 1 _ |a Bamberg, Fabian
|b 20
700 1 _ |a Machann, Jürgen
|b 21
773 _ _ |a 10.1016/j.zemedi.2025.02.005
|g p. S0939388925000352
|0 PERI:(DE-600)2231492-1
|n 1
|p 114-124
|t Zeitschrift für medizinische Physik
|v 36
|y 2026
|x 0939-3889
909 C O |p VDB
|o oai:inrepo02.dkfz.de:300113
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)a70f21a2bf78bbc1306c3d432ae08dc7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-08-22T12:30:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-08-22T12:30:28Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-08-22T12:30:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b Z MED PHYS : 2022
|d 2024-12-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-13
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-13
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-13
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21