000300154 001__ 300154
000300154 005__ 20250328112422.0
000300154 0247_ $$2doi$$a10.1093/bib/bbaf107
000300154 0247_ $$2pmid$$apmid:40112338
000300154 0247_ $$2pmc$$apmc:PMC11924403
000300154 0247_ $$2ISSN$$a1467-5463
000300154 0247_ $$2ISSN$$a1477-4054
000300154 037__ $$aDKFZ-2025-00640
000300154 041__ $$aEnglish
000300154 082__ $$a004
000300154 1001_ $$aFonzino, Adriano$$b0
000300154 245__ $$aREDInet: a temporal convolutional network-based classifier for A-to-I RNA editing detection harnessing million known events.
000300154 260__ $$aOxford [u.a.]$$bOxford University Press$$c2025
000300154 3367_ $$2DRIVER$$aarticle
000300154 3367_ $$2DataCite$$aOutput Types/Journal article
000300154 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1743149945_31629
000300154 3367_ $$2BibTeX$$aARTICLE
000300154 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000300154 3367_ $$00$$2EndNote$$aJournal Article
000300154 520__ $$aA-to-I ribonucleic acid (RNA) editing detection is still a challenging task. Current bioinformatics tools rely on empirical filters and whole genome sequencing or whole exome sequencing data to remove background noise, sequencing errors, and artifacts. Sometimes they make use of cumbersome and time-consuming computational procedures. Here, we present REDInet, a temporal convolutional network-based deep learning algorithm, to profile RNA editing in human RNA sequencing (RNAseq) data. It has been trained on REDIportal RNA editing sites, the largest collection of human A-to-I changes from >8000 RNAseq data of the genotype-tissue expression project. REDInet can classify editing events with high accuracy harnessing RNAseq nucleotide frequencies of 101-base windows without the need for coupled genomic data.
000300154 536__ $$0G:(DE-HGF)POF4-314$$a314 - Immunologie und Krebs (POF4-314)$$cPOF4-314$$fPOF IV$$x0
000300154 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000300154 650_7 $$2Other$$aA-to-I RNA editing
000300154 650_7 $$2Other$$aREDItools
000300154 650_7 $$2Other$$aRNAseq
000300154 650_7 $$2Other$$atemporal convolutional network
000300154 650_2 $$2MeSH$$aHumans
000300154 650_2 $$2MeSH$$aRNA Editing
000300154 650_2 $$2MeSH$$aComputational Biology: methods
000300154 650_2 $$2MeSH$$aDeep Learning
000300154 650_2 $$2MeSH$$aAlgorithms
000300154 650_2 $$2MeSH$$aNeural Networks, Computer
000300154 650_2 $$2MeSH$$aSequence Analysis, RNA: methods
000300154 650_2 $$2MeSH$$aSoftware
000300154 7001_ $$aMazzacuva, Pietro Luca$$b1
000300154 7001_ $$aHanden, Adam$$b2
000300154 7001_ $$aSilvestris, Domenico Alessandro$$b3
000300154 7001_ $$0P:(DE-He78)7c776439971ef21f36ac730cfbff7fff$$aArnold, Annette$$b4$$udkfz
000300154 7001_ $$0P:(DE-He78)a8b399fa71eacddc353846ca1d9d2127$$aPecori, Riccardo$$b5$$udkfz
000300154 7001_ $$00000-0003-3663-0859$$aPesole, Graziano$$b6
000300154 7001_ $$00000-0002-6549-0114$$aPicardi, Ernesto$$b7
000300154 773__ $$0PERI:(DE-600)2036055-1$$a10.1093/bib/bbaf107$$gVol. 26, no. 2, p. bbaf107$$n2$$pbbaf107$$tBriefings in bioinformatics$$v26$$x1467-5463$$y2025
000300154 909CO $$ooai:inrepo02.dkfz.de:300154$$pVDB
000300154 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7c776439971ef21f36ac730cfbff7fff$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000300154 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a8b399fa71eacddc353846ca1d9d2127$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000300154 9131_ $$0G:(DE-HGF)POF4-314$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImmunologie und Krebs$$x0
000300154 9141_ $$y2025
000300154 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-28$$wger
000300154 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
000300154 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
000300154 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
000300154 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-28
000300154 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
000300154 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-28
000300154 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-28
000300154 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28
000300154 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
000300154 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-28
000300154 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-28
000300154 9201_ $$0I:(DE-He78)D150-20160331$$kD150$$lImmundiversität$$x0
000300154 980__ $$ajournal
000300154 980__ $$aVDB
000300154 980__ $$aI:(DE-He78)D150-20160331
000300154 980__ $$aUNRESTRICTED