001     300154
005     20250328112422.0
024 7 _ |a 10.1093/bib/bbaf107
|2 doi
024 7 _ |a pmid:40112338
|2 pmid
024 7 _ |a pmc:PMC11924403
|2 pmc
024 7 _ |a 1467-5463
|2 ISSN
024 7 _ |a 1477-4054
|2 ISSN
037 _ _ |a DKFZ-2025-00640
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Fonzino, Adriano
|b 0
245 _ _ |a REDInet: a temporal convolutional network-based classifier for A-to-I RNA editing detection harnessing million known events.
260 _ _ |a Oxford [u.a.]
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1743149945_31629
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A-to-I ribonucleic acid (RNA) editing detection is still a challenging task. Current bioinformatics tools rely on empirical filters and whole genome sequencing or whole exome sequencing data to remove background noise, sequencing errors, and artifacts. Sometimes they make use of cumbersome and time-consuming computational procedures. Here, we present REDInet, a temporal convolutional network-based deep learning algorithm, to profile RNA editing in human RNA sequencing (RNAseq) data. It has been trained on REDIportal RNA editing sites, the largest collection of human A-to-I changes from >8000 RNAseq data of the genotype-tissue expression project. REDInet can classify editing events with high accuracy harnessing RNAseq nucleotide frequencies of 101-base windows without the need for coupled genomic data.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a A-to-I RNA editing
|2 Other
650 _ 7 |a REDItools
|2 Other
650 _ 7 |a RNAseq
|2 Other
650 _ 7 |a temporal convolutional network
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a RNA Editing
|2 MeSH
650 _ 2 |a Computational Biology: methods
|2 MeSH
650 _ 2 |a Deep Learning
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Neural Networks, Computer
|2 MeSH
650 _ 2 |a Sequence Analysis, RNA: methods
|2 MeSH
650 _ 2 |a Software
|2 MeSH
700 1 _ |a Mazzacuva, Pietro Luca
|b 1
700 1 _ |a Handen, Adam
|b 2
700 1 _ |a Silvestris, Domenico Alessandro
|b 3
700 1 _ |a Arnold, Annette
|0 P:(DE-He78)7c776439971ef21f36ac730cfbff7fff
|b 4
|u dkfz
700 1 _ |a Pecori, Riccardo
|0 P:(DE-He78)a8b399fa71eacddc353846ca1d9d2127
|b 5
|u dkfz
700 1 _ |a Pesole, Graziano
|0 0000-0003-3663-0859
|b 6
700 1 _ |a Picardi, Ernesto
|0 0000-0002-6549-0114
|b 7
773 _ _ |a 10.1093/bib/bbaf107
|g Vol. 26, no. 2, p. bbaf107
|0 PERI:(DE-600)2036055-1
|n 2
|p bbaf107
|t Briefings in bioinformatics
|v 26
|y 2025
|x 1467-5463
909 C O |o oai:inrepo02.dkfz.de:300154
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)7c776439971ef21f36ac730cfbff7fff
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)a8b399fa71eacddc353846ca1d9d2127
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-28
920 1 _ |0 I:(DE-He78)D150-20160331
|k D150
|l Immundiversität
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D150-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21