000300191 001__ 300191
000300191 005__ 20250401112458.0
000300191 0247_ $$2doi$$a10.1016/j.jare.2025.03.034
000300191 0247_ $$2pmid$$apmid:40154735
000300191 0247_ $$2ISSN$$a2090-1232
000300191 0247_ $$2ISSN$$a2090-1224
000300191 037__ $$aDKFZ-2025-00668
000300191 041__ $$aEnglish
000300191 082__ $$a500
000300191 1001_ $$0P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07$$aXie, Ruijie$$b0$$eFirst author$$udkfz
000300191 245__ $$aSex-specific proteomic signatures improve cardiovascular risk prediction for the general population without cardiovascular disease or diabetes.
000300191 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2025
000300191 3367_ $$2DRIVER$$aarticle
000300191 3367_ $$2DataCite$$aOutput Types/Journal article
000300191 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1743419986_7766
000300191 3367_ $$2BibTeX$$aARTICLE
000300191 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000300191 3367_ $$00$$2EndNote$$aJournal Article
000300191 500__ $$a#EA:C070#LA:C070# / epub
000300191 520__ $$aAccurate prediction of 10-year major adverse cardiovascular events (MACE) is critical for effective disease prevention and management. Although the SCORE2 model introduced sex-specific algorithms, opportunities remain to further refine prediction.To evaluate whether adding sex-specific proteomic profiles to the SCORE2 model enhances 10-year MACE risk prediction in the large UK Biobank (UKB) cohort.Data from 47,382 UKB participants, aged 40 to 69 years without prior cardiovascular disease or diabetes, were utilized. Proteomic profiling of plasma samples was conducted using the Olink Explore 3072 platform, measuring 2,923 unique proteins, of which 2,085 could be used. Sex-specific Least Absolute Shrinkage and Selection Operator (LASSO) regression was used for biomarker selection. Model performance was assessed by changes in Harrell's C-index (a measure of discrimination), net reclassification index (NRI), and integrated discrimination index (IDI).During 10-year follow-up, 2,163 participants experienced MACE. Overall, 18 proteins were selected by LASSO regression, with 5 of them identified in both sexes, 7 only in males, and 6 only in females. Incorporating these proteins significantly improved the C-index of the SCORE2 model from 0.713 to 0.778 (P < 0.001) in the total population. The improvement was greater in males (C-index increase from 0.684 to 0.771; Δ = +0.087) than in females (from 0.720 to 0.769; Δ = +0.049). The WAP four-disulfide core domain protein (WFDC2) and the growth/differentiation factor 15 (GDF15) were the proteins contributing the strongest C-index increase in both sexes, even more than the N-terminal prohormone of brain natriuretic peptide (NTproBNP).The derived sex-specific 10-year MACE risk prediction models, combining 12 protein concentrations among men and 11 protein concentrations among women with the SCORE2 model, significantly improved the discriminative abilities of the SCORE2 model. This study shows the potential of sex-specific proteomic profiles for enhanced cardiovascular risk stratification and personalized prevention strategies.
000300191 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000300191 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000300191 650_7 $$2Other$$aCardiovascular risk
000300191 650_7 $$2Other$$aPrediction model
000300191 650_7 $$2Other$$aProteomics
000300191 650_7 $$2Other$$aSCORE2
000300191 650_7 $$2Other$$aSex-specific
000300191 7001_ $$0P:(DE-He78)236d02bfaad255f19aa65e9cd9d63a8a$$aVlaski, Tomislav$$b1$$udkfz
000300191 7001_ $$0P:(DE-He78)1d6f6305a65e2f7de2c7fbffbae83780$$aSha, Sha$$b2$$udkfz
000300191 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b3$$udkfz
000300191 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b4$$eLast author$$udkfz
000300191 773__ $$0PERI:(DE-600)2541849-X$$a10.1016/j.jare.2025.03.034$$gp. S2090123225001948$$pnn$$tJournal of advanced research$$vnn$$x2090-1232$$y2025
000300191 909CO $$ooai:inrepo02.dkfz.de:300191$$pVDB
000300191 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000300191 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)236d02bfaad255f19aa65e9cd9d63a8a$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000300191 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1d6f6305a65e2f7de2c7fbffbae83780$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000300191 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000300191 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000300191 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000300191 9141_ $$y2025
000300191 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
000300191 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
000300191 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:49:19Z
000300191 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:49:19Z
000300191 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double anonymous peer review$$d2023-04-12T14:49:19Z
000300191 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
000300191 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-06
000300191 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-06
000300191 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
000300191 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ADV RES : 2022$$d2024-12-06
000300191 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-06
000300191 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-06
000300191 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ ADV RES : 2022$$d2024-12-06
000300191 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-06
000300191 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-06
000300191 9202_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000300191 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000300191 9200_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000300191 980__ $$ajournal
000300191 980__ $$aVDB
000300191 980__ $$aI:(DE-He78)C070-20160331
000300191 980__ $$aUNRESTRICTED