001     300191
005     20250401112458.0
024 7 _ |a 10.1016/j.jare.2025.03.034
|2 doi
024 7 _ |a pmid:40154735
|2 pmid
024 7 _ |a 2090-1232
|2 ISSN
024 7 _ |a 2090-1224
|2 ISSN
037 _ _ |a DKFZ-2025-00668
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Xie, Ruijie
|0 P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07
|b 0
|e First author
|u dkfz
245 _ _ |a Sex-specific proteomic signatures improve cardiovascular risk prediction for the general population without cardiovascular disease or diabetes.
260 _ _ |a Amsterdam ˜[u.a.]œ
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1743419986_7766
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070#LA:C070# / epub
520 _ _ |a Accurate prediction of 10-year major adverse cardiovascular events (MACE) is critical for effective disease prevention and management. Although the SCORE2 model introduced sex-specific algorithms, opportunities remain to further refine prediction.To evaluate whether adding sex-specific proteomic profiles to the SCORE2 model enhances 10-year MACE risk prediction in the large UK Biobank (UKB) cohort.Data from 47,382 UKB participants, aged 40 to 69 years without prior cardiovascular disease or diabetes, were utilized. Proteomic profiling of plasma samples was conducted using the Olink Explore 3072 platform, measuring 2,923 unique proteins, of which 2,085 could be used. Sex-specific Least Absolute Shrinkage and Selection Operator (LASSO) regression was used for biomarker selection. Model performance was assessed by changes in Harrell's C-index (a measure of discrimination), net reclassification index (NRI), and integrated discrimination index (IDI).During 10-year follow-up, 2,163 participants experienced MACE. Overall, 18 proteins were selected by LASSO regression, with 5 of them identified in both sexes, 7 only in males, and 6 only in females. Incorporating these proteins significantly improved the C-index of the SCORE2 model from 0.713 to 0.778 (P < 0.001) in the total population. The improvement was greater in males (C-index increase from 0.684 to 0.771; Δ = +0.087) than in females (from 0.720 to 0.769; Δ = +0.049). The WAP four-disulfide core domain protein (WFDC2) and the growth/differentiation factor 15 (GDF15) were the proteins contributing the strongest C-index increase in both sexes, even more than the N-terminal prohormone of brain natriuretic peptide (NTproBNP).The derived sex-specific 10-year MACE risk prediction models, combining 12 protein concentrations among men and 11 protein concentrations among women with the SCORE2 model, significantly improved the discriminative abilities of the SCORE2 model. This study shows the potential of sex-specific proteomic profiles for enhanced cardiovascular risk stratification and personalized prevention strategies.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Cardiovascular risk
|2 Other
650 _ 7 |a Prediction model
|2 Other
650 _ 7 |a Proteomics
|2 Other
650 _ 7 |a SCORE2
|2 Other
650 _ 7 |a Sex-specific
|2 Other
700 1 _ |a Vlaski, Tomislav
|0 P:(DE-He78)236d02bfaad255f19aa65e9cd9d63a8a
|b 1
|u dkfz
700 1 _ |a Sha, Sha
|0 P:(DE-He78)1d6f6305a65e2f7de2c7fbffbae83780
|b 2
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 3
|u dkfz
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.jare.2025.03.034
|g p. S2090123225001948
|0 PERI:(DE-600)2541849-X
|p nn
|t Journal of advanced research
|v nn
|y 2025
|x 2090-1232
909 C O |o oai:inrepo02.dkfz.de:300191
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)236d02bfaad255f19aa65e9cd9d63a8a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)1d6f6305a65e2f7de2c7fbffbae83780
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:49:19Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:49:19Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double anonymous peer review
|d 2023-04-12T14:49:19Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ADV RES : 2022
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-06
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J ADV RES : 2022
|d 2024-12-06
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-06
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-06
920 2 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 0 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21