001     300252
005     20250522145738.0
024 7 _ |a 10.2337/dc24-2478
|2 doi
024 7 _ |a pmid:40178901
|2 pmid
024 7 _ |a 0149-5992
|2 ISSN
024 7 _ |a 1935-5548
|2 ISSN
024 7 _ |a altmetric:175933343
|2 altmetric
037 _ _ |a DKFZ-2025-00713
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Xie, Ruijie
|0 P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07
|b 0
|e First author
|u dkfz
245 _ _ |a Large-Scale Proteomics Improve Risk Prediction for Type 2 Diabetes.
260 _ _ |a Alexandria, Va.
|c 2025
|b Assoc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747918619_12635
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070#LA:C070# / 2025 Jun 1;48(6):922-926
520 _ _ |a This study evaluated the incremental predictive value of proteomic biomarkers in assessing 10-year type 2 diabetes risk when added to the clinical Cambridge Diabetes Risk Score (CDRS).Data from 21,898 UK Biobank participants were used for model derivation and internal validation, and 4,454 Epidemiologische Studie zu Chancen der Verhütung, Früherkennung und optimierten Therapie chronischer Erkrankungen in der älteren Bevölkerung (ESTHER) cohort (Germany) participants were used for external validation. Proteomic profiling included the Olink Explore (2,085 proteins) and Olink Target 96 Inflammation panel (73 proteins).Adding 15 proteins from Olink Explore or 6 proteins from the Olink Inflammation panel improved the C-index of the CDRS by 0.029 or 0.016 in internal validation with net reclassification of 23.0% and 29.0%, respectively. External validation was only conducted for the six-protein-extended model, and the C-index improved by 0.014.The Olink Explore-based 15-protein model enhanced the CDRS model performance most, and this promising prediction model should be externally validated. Our successful external validation of the Olink Inflammation panel-based six-protein model shows that this is a promising endeavor.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Vlaski, Tomislav
|0 P:(DE-He78)236d02bfaad255f19aa65e9cd9d63a8a
|b 1
|u dkfz
700 1 _ |a Trares, Kira
|0 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea
|b 2
|u dkfz
700 1 _ |a Herder, Christian
|0 0000-0002-2050-093X
|b 3
700 1 _ |a Holleczek, Bernd
|b 4
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 5
|u dkfz
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 6
|e Last author
|u dkfz
773 _ _ |a 10.2337/dc24-2478
|g p. dc242478
|0 PERI:(DE-600)1490520-6
|n 6
|p 922-926
|t Diabetes care
|v 48
|y 2025
|x 0149-5992
909 C O |p VDB
|o oai:inrepo02.dkfz.de:300252
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)236d02bfaad255f19aa65e9cd9d63a8a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b DIABETES CARE : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b DIABETES CARE : 2022
|d 2025-01-06
920 2 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie der Krebsfrüherkennung
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie der Krebsfrüherkennung
|x 0
920 0 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie der Krebsfrüherkennung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21