Home > Publications database > Rustims: An Open-Source Framework for Rapid Development and Processing of timsTOF Data-Dependent Acquisition Data. > print |
001 | 300630 | ||
005 | 20250507113312.0 | ||
024 | 7 | _ | |a 10.1021/acs.jproteome.4c00966 |2 doi |
024 | 7 | _ | |a pmid:40260647 |2 pmid |
024 | 7 | _ | |a 1535-3893 |2 ISSN |
024 | 7 | _ | |a 1535-3907 |2 ISSN |
024 | 7 | _ | |a altmetric:176332172 |2 altmetric |
037 | _ | _ | |a DKFZ-2025-00844 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Teschner, David |0 0000-0002-1755-5382 |b 0 |
245 | _ | _ | |a Rustims: An Open-Source Framework for Rapid Development and Processing of timsTOF Data-Dependent Acquisition Data. |
260 | _ | _ | |a Washington, DC |c 2025 |b ACS Publications |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1746610350_3748 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 2025 May 2;24(5):2358-2368 |
520 | _ | _ | |a Mass spectrometry is essential for analyzing and quantifying biological samples. The timsTOF platform is a prominent commercial tool for this purpose, particularly in bottom-up acquisition scenarios. The additional ion mobility dimension requires more complex data processing, yet most current software solutions for timsTOF raw data are proprietary or closed-source, limiting integration into custom workflows. We introduce rustims, a framework implementing a flexible toolbox designed for processing timsTOF raw data, currently focusing on data-dependent acquisition (DDA-PASEF). The framework employs a dual-language approach, combining efficient, multithreaded Rust code with an easy-to-use Python interface. This allows for implementations that are fast, intuitive, and easy to integrate. With imspy as its main Python scripting interface and sagepy for Sage search engine bindings, rustims enables fast, integrable, and intuitive processing. We demonstrate its capabilities with a pipeline for DDA-PASEF data including rescoring and integration of third-party tools like the Prosit intensity predictor and an extended ion mobility model. This pipeline supports tryptic proteomics and nontryptic immunopeptidomics data, with benchmark comparisons to FragPipe and PEAKS. Rustims is available on GitHub under the MIT license, with installation packages for multiple platforms on PyPi and all analysis scripts accessible via Zenodo. |
536 | _ | _ | |a 314 - Immunologie und Krebs (POF4-314) |0 G:(DE-HGF)POF4-314 |c POF4-314 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a DDA-PASEF |2 Other |
650 | _ | 7 | |a Python |2 Other |
650 | _ | 7 | |a framework |2 Other |
650 | _ | 7 | |a ion mobility |2 Other |
650 | _ | 7 | |a mass spectrometry |2 Other |
650 | _ | 7 | |a open-source |2 Other |
650 | _ | 7 | |a proteomics |2 Other |
650 | _ | 7 | |a rust-lang |2 Other |
650 | _ | 7 | |a timsTOF |2 Other |
700 | 1 | _ | |a Gómez-Zepeda, David |0 P:(DE-He78)4569ef2919d2438765ad71515f53646b |b 1 |u dkfz |
700 | 1 | _ | |a Łącki, Mateusz K |0 0000-0001-7415-4748 |b 2 |
700 | 1 | _ | |a Kemmer, Thomas |0 0000-0003-1180-746X |b 3 |
700 | 1 | _ | |a Busch, Anne |0 0009-0002-7955-821X |b 4 |
700 | 1 | _ | |a Tenzer, Stefan |0 P:(DE-He78)74e391c68d7926be83d679f3d8891e33 |b 5 |u dkfz |
700 | 1 | _ | |a Hildebrandt, Andreas |b 6 |
773 | _ | _ | |a 10.1021/acs.jproteome.4c00966 |g p. acs.jproteome.4c00966 |0 PERI:(DE-600)2065254-9 |n 5 |p 2358-2368 |t Journal of proteome research |v 24 |y 2025 |x 1535-3893 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:300630 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)4569ef2919d2438765ad71515f53646b |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)74e391c68d7926be83d679f3d8891e33 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-314 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Immunologie und Krebs |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J PROTEOME RES : 2022 |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-20 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-20 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-20 |
920 | 1 | _ | |0 I:(DE-He78)D190-20160331 |k D190 |l HI-TRON zentral |x 0 |
920 | 1 | _ | |0 I:(DE-He78)D191-20160331 |k D191 |l Hi-TRON Immunoproteomik |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)D190-20160331 |
980 | _ | _ | |a I:(DE-He78)D191-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|