000300632 001__ 300632
000300632 005__ 20250424112827.0
000300632 0247_ $$2doi$$a10.1186/s12939-025-02479-2
000300632 0247_ $$2pmid$$apmid:40259268
000300632 037__ $$aDKFZ-2025-00846
000300632 041__ $$aEnglish
000300632 082__ $$a610
000300632 1001_ $$aVonneilich, Nico$$b0
000300632 245__ $$aDepressive symptoms, education, gender and history of migration - an intersectional analysis using data from the German National Cohort (NAKO).
000300632 260__ $$aLondon$$bBioMed Central$$c2025
000300632 3367_ $$2DRIVER$$aarticle
000300632 3367_ $$2DataCite$$aOutput Types/Journal article
000300632 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745414883_30950
000300632 3367_ $$2BibTeX$$aARTICLE
000300632 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000300632 3367_ $$00$$2EndNote$$aJournal Article
000300632 520__ $$aThe educational gradient in depressive symptoms is well documented. Gender and history of migration have also been found to be associated with depressive symptoms. Intersectional approaches enable the analysis of the interplay of different social factors at a time to gain a deeper understanding of inequalities in depressive symptoms. In this study, intersectional inequalities in depressive symptoms according to education, gender and history of migration are analysed.The German National Cohort (NAKO, N = 204,783) collected information on depressive symptoms (PHQ-9), which was used as an outcome variable. Educational attainment (ISCED-97), gender, and history of migration constituted the different social strata in the analyses. The predicted probabilities of depressive symptoms for 30 social strata were calculated. Multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) was applied, using logistic regression and social strata were introduced as higher-level unit interaction terms.The analyses revealed an educational gradient in depressive symptoms, with differences within each educational group when gender and history of migration were introduced to the models. The predicted probabilities of depressive symptoms varied between the most advantaged and the most disadvantaged social strata by more than 20% points. Among the three studied variables, education contributed the most to the variance explained by the MAIHDA models. The between-strata differences were largely explained by additive effects.We observed a robust educational gradient in depressive symptoms, but gender and history of migration had substantial contribution on the magnitude of educational inequalities. An intersectional perspective on inequalities in depressive symptoms enhances current knowledge by showing that different social dimensions may intersect and contribute to inequalities in depressive symptoms. Future studies on inequalities in depression may greatly benefit from an intersectional approach, as it reflects lived inequalities in their diversity.
000300632 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000300632 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000300632 650_7 $$2Other$$aDepression
000300632 650_7 $$2Other$$aEducational inequalities
000300632 650_7 $$2Other$$aGender
000300632 650_7 $$2Other$$aGerman national cohort
000300632 650_7 $$2Other$$aHistory of migration
000300632 650_7 $$2Other$$aIntersectional analysis
000300632 650_7 $$2Other$$aMAIHDA
000300632 650_7 $$2Other$$aNAKO
000300632 650_2 $$2MeSH$$aHumans
000300632 650_2 $$2MeSH$$aGermany: epidemiology
000300632 650_2 $$2MeSH$$aMale
000300632 650_2 $$2MeSH$$aFemale
000300632 650_2 $$2MeSH$$aEducational Status
000300632 650_2 $$2MeSH$$aDepression: epidemiology
000300632 650_2 $$2MeSH$$aAdult
000300632 650_2 $$2MeSH$$aMiddle Aged
000300632 650_2 $$2MeSH$$aCohort Studies
000300632 650_2 $$2MeSH$$aSex Factors
000300632 650_2 $$2MeSH$$aSocioeconomic Factors
000300632 650_2 $$2MeSH$$aAged
000300632 650_2 $$2MeSH$$aHealth Status Disparities
000300632 7001_ $$aBecher, Heiko$$b1
000300632 7001_ $$aBerger, Klaus$$b2
000300632 7001_ $$aBohmann, Patricia$$b3
000300632 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b4$$udkfz
000300632 7001_ $$aCastell, Stefanie$$b5
000300632 7001_ $$aDragano, Nico$$b6
000300632 7001_ $$aHarth, Volker$$b7
000300632 7001_ $$aJaskulski, Stefanie$$b8
000300632 7001_ $$aKarch, André$$b9
000300632 7001_ $$aKeil, Thomas$$b10
000300632 7001_ $$aKrist, Lilian$$b11
000300632 7001_ $$aLange, Berit$$b12
000300632 7001_ $$aLeitzmann, Michael$$b13
000300632 7001_ $$aMassag, Janka$$b14
000300632 7001_ $$aMeinke-Franze, Claudia$$b15
000300632 7001_ $$aMikolajczyk, Rafael$$b16
000300632 7001_ $$aObi, Nadia$$b17
000300632 7001_ $$aPischon, Tobias$$b18
000300632 7001_ $$aReuter, Marvin$$b19
000300632 7001_ $$aSchmidt, Börge$$b20
000300632 7001_ $$aVelásquez, Ilais Moreno$$b21
000300632 7001_ $$aVölzke, Henry$$b22
000300632 7001_ $$aWiessner, Christian$$b23
000300632 7001_ $$avon dem Knesebeck, Olaf$$b24
000300632 7001_ $$aLüdecke, Daniel$$b25
000300632 773__ $$0PERI:(DE-600)2092056-8$$a10.1186/s12939-025-02479-2$$gVol. 24, no. 1, p. 108$$n1$$p108$$tInternational journal for equity in health$$v24$$x1475-9276$$y2025
000300632 909CO $$ooai:inrepo02.dkfz.de:300632$$pVDB
000300632 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000300632 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000300632 9141_ $$y2025
000300632 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J EQUITY HEALTH : 2022$$d2024-12-28
000300632 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
000300632 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
000300632 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:40:09Z
000300632 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:40:09Z
000300632 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:40:09Z
000300632 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-28
000300632 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-28
000300632 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
000300632 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
000300632 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2024-12-28
000300632 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2024-12-28
000300632 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-28
000300632 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-28
000300632 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-28
000300632 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000300632 980__ $$ajournal
000300632 980__ $$aVDB
000300632 980__ $$aI:(DE-He78)C070-20160331
000300632 980__ $$aUNRESTRICTED