001     300633
005     20250610091534.0
024 7 _ |a 10.1007/s10654-025-01219-8
|2 doi
024 7 _ |a pmid:40259125
|2 pmid
024 7 _ |a 0393-2990
|2 ISSN
024 7 _ |a 1573-7284
|2 ISSN
037 _ _ |a DKFZ-2025-00847
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rach, Stefan
|0 0000-0001-5241-0253
|b 0
245 _ _ |a The baseline examinations of the German National Cohort (NAKO): recruitment protocol, response, and weighting.
260 _ _ |a [Cham]
|c 2025
|b Springer Nature Switzerland AG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1749539689_29233
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2025 Apr;40(4):475-489
520 _ _ |a The German National Cohort (NAKO) is the largest population-based epidemiologic cohort study in Germany and investigates the causes of the most common chronic diseases. Between 2014 and 2019, a total of 1.3 million residents aged 20-69 years from 16 German regions were randomly selected from the general population and invited to participate following a highly standardized recruitment protocol. The overall response was 15.6% and differed considerably across study centers (7.6-30.7%). Females were more likely to participate than males (17.5% vs. 14.1%) and participation increased with age (10.2% in age group ' < 29 years' up to 20.7% in age group ' > 60 years'). Across all study regions, response was highest in rural areas (22.3%), followed by towns and suburbs (17.2%), and was lowest in cities (14.5%). Compared with the general population in the respective study regions, participants with low and medium education are underrepresented in the NAKO sample, while highly educated participants are overrepresented. Participants with non-German nationality and with a migration background are also underrepresented. Participants living in single households are underrepresented, while participants from larger households (2 or more persons) are overrepresented compared to the general population. Survey weights are made available to researchers along with the study data that account for the sampling design and adjust for differences in the distribution of age, sex, nationality (German vs. non-German), migration status, education, and household size.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Cohort studies
|2 Other
650 _ 7 |a Correction weights
|2 Other
650 _ 7 |a Epidemiology
|2 Other
650 _ 7 |a Nonresponse
|2 Other
650 _ 7 |a Participation
|2 Other
650 _ 7 |a Population-based
|2 Other
650 _ 7 |a Response
|2 Other
650 _ 7 |a Sample design
|2 Other
650 _ 7 |a Survey weights
|2 Other
700 1 _ |a Sand, Matthias
|b 1
700 1 _ |a Reineke, Achim
|0 0000-0002-0092-4110
|b 2
700 1 _ |a Becher, Heiko
|0 0000-0002-8808-6667
|b 3
700 1 _ |a Greiser, Karin Halina
|0 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
|b 4
|u dkfz
700 1 _ |a Wolf, Kathrin
|0 0000-0002-4343-201X
|b 5
700 1 _ |a Wirkner, Kerstin
|0 0009-0000-1301-7125
|b 6
700 1 _ |a Schmidt, Carsten Oliver
|b 7
700 1 _ |a Schipf, Sabine
|0 0000-0002-2700-5317
|b 8
700 1 _ |a Jöckel, Karl-Heinz
|0 0000-0002-1987-0255
|b 9
700 1 _ |a Krist, Lilian
|b 10
700 1 _ |a Ahrens, Wolfgang
|0 0000-0003-3777-570X
|b 11
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 12
|u dkfz
700 1 _ |a Castell, Stefanie
|0 0000-0003-1762-8462
|b 13
700 1 _ |a Gastell, Sylvia
|b 14
700 1 _ |a Harth, Volker
|0 0000-0003-4308-223X
|b 15
700 1 _ |a Holleczek, Bernd
|b 16
700 1 _ |a Ittermann, Till
|0 0000-0002-0154-7353
|b 17
700 1 _ |a Janisch-Fabian, Stefan
|b 18
700 1 _ |a Karch, André
|b 19
700 1 _ |a Keil, Thomas
|0 0000-0002-9108-3360
|b 20
700 1 _ |a Klett-Tammen, Carolina J
|0 0000-0001-9685-5369
|b 21
700 1 _ |a Kluttig, Alexander
|0 0000-0003-4446-9938
|b 22
700 1 _ |a Kuß, Oliver
|0 0000-0003-3301-5869
|b 23
700 1 _ |a Leitzmann, Michael
|b 24
700 1 _ |a Lieb, Wolfgang
|0 0000-0003-2544-4460
|b 25
700 1 _ |a Meinke-Franze, Claudia
|0 0000-0001-6137-9702
|b 26
700 1 _ |a Michels, Karin B
|b 27
700 1 _ |a Mikolajczyk, Rafael
|0 0000-0003-1271-7204
|b 28
700 1 _ |a Moreno Velásquez, Ilais
|0 0000-0001-6058-8983
|b 29
700 1 _ |a Obi, Nadia
|0 0000-0002-0903-9142
|b 30
700 1 _ |a Övermöhle, Cara
|b 31
700 1 _ |a Peters, Annette
|b 32
700 1 _ |a Pischon, Tobias
|0 0000-0003-1568-767X
|b 33
700 1 _ |a Rospleszcz, Susanne
|0 0000-0002-4788-2341
|b 34
700 1 _ |a Schmidt, Börge
|b 35
700 1 _ |a Schulze, Matthias B
|0 0000-0002-0830-5277
|b 36
700 1 _ |a Stang, Andreas
|b 37
700 1 _ |a Teismann, Henning
|0 0000-0001-5807-5572
|b 38
700 1 _ |a Töpfer, Christine
|b 39
700 1 _ |a Wolff, Robert
|b 40
700 1 _ |a Günther, Kathrin
|0 0000-0003-3801-4769
|b 41
773 _ _ |a 10.1007/s10654-025-01219-8
|0 PERI:(DE-600)2004992-4
|n 4
|p 475-489
|t European journal of epidemiology
|v 40
|y 2025
|x 0393-2990
909 C O |p VDB
|o oai:inrepo02.dkfz.de:300633
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2025-01-01
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2025-01-01
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2025-01-01
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J EPIDEMIOL : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-01
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EUR J EPIDEMIOL : 2022
|d 2025-01-01
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie der Krebsfrüherkennung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21