000300675 001__ 300675
000300675 005__ 20250426112842.0
000300675 0247_ $$2doi$$a10.1093/eurjpc/zwaf254
000300675 0247_ $$2pmid$$apmid:40269530
000300675 0247_ $$2ISSN$$a2047-4873
000300675 0247_ $$2ISSN$$a2047-4881
000300675 037__ $$aDKFZ-2025-00869
000300675 041__ $$aEnglish
000300675 082__ $$a610
000300675 1001_ $$0P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07$$aXie, Ruijie$$b0$$eFirst author$$udkfz
000300675 245__ $$aMetabolomics data improve 10-year cardiovascular risk prediction with the SCORE2 algorithm for the general population without cardiovascular disease or diabetes.
000300675 260__ $$aOxford$$bOxford University Press$$c2025
000300675 3367_ $$2DRIVER$$aarticle
000300675 3367_ $$2DataCite$$aOutput Types/Journal article
000300675 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745585839_24593
000300675 3367_ $$2BibTeX$$aARTICLE
000300675 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000300675 3367_ $$00$$2EndNote$$aJournal Article
000300675 500__ $$a#EA:C070#LA:C070# / epub
000300675 520__ $$aThe value of metabolomic biomarkers for cardiovascular risk prediction is unclear. This study aimed to evaluate the potential of improved prediction of the 10-year risk of major adverse cardiovascular events (MACE) in large population-based cohorts by adding metabolomic biomarkers to the novel SCORE2 model, which was introduced in 2021 for the European population without previous cardiovascular disease or diabetes.Data from 187,039 and 5,578 participants from the UK Biobank (UKB) and the German ESTHER cohort, respectively, were used for model derivation, internal and external validation. A total of 249 metabolites were measured with nuclear magnetic resonance (NMR) spectroscopy. LASSO regression with bootstrapping was used to identify metabolites in sex-specific analyses and the predictive performance of metabolites added to the SCORE2 model was primarily evaluated with Harrell's C-index.Thirteen metabolomic biomarkers were selected by LASSO regression for enhanced MACE risk prediction (three for both sexes, six male- and four female-specific metabolites) in the UKB derivation set. In internal validation with the UKB, adding the selected metabolites to the SCORE2 model increased the C-index statistically significantly (P<0.001) from 0.691 to 0.710. In external validation with ESTHER, the C-index increase was similar (from 0.673 to 0.688, P=0.042). The inflammation biomarker, glycoprotein acetyls, contributed the most to the increased C-index in both men and women.The integration of metabolomic biomarkers into the SCORE2 model markedly improves the prediction of 10-year cardiovascular risk. With recent advancements in reducing costs and standardizing processes, NMR metabolomics holds considerable promise for implementation in clinical practice.
000300675 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000300675 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000300675 650_7 $$2Other$$aSCORE2
000300675 650_7 $$2Other$$acardiovascular risk
000300675 650_7 $$2Other$$ametabolomics
000300675 650_7 $$2Other$$aprediction model
000300675 7001_ $$0P:(DE-He78)1d6f6305a65e2f7de2c7fbffbae83780$$aSha, Sha$$b1$$udkfz
000300675 7001_ $$0P:(DE-He78)4ce42c81105c13e820996838fed24b31$$aPeng, Lei$$b2$$udkfz
000300675 7001_ $$aHolleczek, Bernd$$b3
000300675 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b4$$udkfz
000300675 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b5$$eLast author$$udkfz
000300675 773__ $$0PERI:(DE-600)2646239-4$$a10.1093/eurjpc/zwaf254$$gp. zwaf254$$pnn$$tEuropean journal of preventive cardiology$$vnn$$x2047-4873$$y2025
000300675 909CO $$ooai:inrepo02.dkfz.de:300675$$pVDB
000300675 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000300675 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1d6f6305a65e2f7de2c7fbffbae83780$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000300675 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4ce42c81105c13e820996838fed24b31$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000300675 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000300675 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000300675 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000300675 9141_ $$y2025
000300675 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-28$$wger
000300675 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J PREV CARDIOL : 2022$$d2024-12-28
000300675 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
000300675 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
000300675 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
000300675 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
000300675 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-28
000300675 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28
000300675 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
000300675 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEUR J PREV CARDIOL : 2022$$d2024-12-28
000300675 9202_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000300675 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000300675 9200_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000300675 980__ $$ajournal
000300675 980__ $$aVDB
000300675 980__ $$aI:(DE-He78)C070-20160331
000300675 980__ $$aUNRESTRICTED