001     300675
005     20250426112842.0
024 7 _ |a 10.1093/eurjpc/zwaf254
|2 doi
024 7 _ |a pmid:40269530
|2 pmid
024 7 _ |a 2047-4873
|2 ISSN
024 7 _ |a 2047-4881
|2 ISSN
037 _ _ |a DKFZ-2025-00869
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Xie, Ruijie
|0 P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07
|b 0
|e First author
|u dkfz
245 _ _ |a Metabolomics data improve 10-year cardiovascular risk prediction with the SCORE2 algorithm for the general population without cardiovascular disease or diabetes.
260 _ _ |a Oxford
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1745585839_24593
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070#LA:C070# / epub
520 _ _ |a The value of metabolomic biomarkers for cardiovascular risk prediction is unclear. This study aimed to evaluate the potential of improved prediction of the 10-year risk of major adverse cardiovascular events (MACE) in large population-based cohorts by adding metabolomic biomarkers to the novel SCORE2 model, which was introduced in 2021 for the European population without previous cardiovascular disease or diabetes.Data from 187,039 and 5,578 participants from the UK Biobank (UKB) and the German ESTHER cohort, respectively, were used for model derivation, internal and external validation. A total of 249 metabolites were measured with nuclear magnetic resonance (NMR) spectroscopy. LASSO regression with bootstrapping was used to identify metabolites in sex-specific analyses and the predictive performance of metabolites added to the SCORE2 model was primarily evaluated with Harrell's C-index.Thirteen metabolomic biomarkers were selected by LASSO regression for enhanced MACE risk prediction (three for both sexes, six male- and four female-specific metabolites) in the UKB derivation set. In internal validation with the UKB, adding the selected metabolites to the SCORE2 model increased the C-index statistically significantly (P<0.001) from 0.691 to 0.710. In external validation with ESTHER, the C-index increase was similar (from 0.673 to 0.688, P=0.042). The inflammation biomarker, glycoprotein acetyls, contributed the most to the increased C-index in both men and women.The integration of metabolomic biomarkers into the SCORE2 model markedly improves the prediction of 10-year cardiovascular risk. With recent advancements in reducing costs and standardizing processes, NMR metabolomics holds considerable promise for implementation in clinical practice.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a SCORE2
|2 Other
650 _ 7 |a cardiovascular risk
|2 Other
650 _ 7 |a metabolomics
|2 Other
650 _ 7 |a prediction model
|2 Other
700 1 _ |a Sha, Sha
|0 P:(DE-He78)1d6f6305a65e2f7de2c7fbffbae83780
|b 1
|u dkfz
700 1 _ |a Peng, Lei
|0 P:(DE-He78)4ce42c81105c13e820996838fed24b31
|b 2
|u dkfz
700 1 _ |a Holleczek, Bernd
|b 3
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 4
|u dkfz
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 5
|e Last author
|u dkfz
773 _ _ |a 10.1093/eurjpc/zwaf254
|g p. zwaf254
|0 PERI:(DE-600)2646239-4
|p nn
|t European journal of preventive cardiology
|v nn
|y 2025
|x 2047-4873
909 C O |o oai:inrepo02.dkfz.de:300675
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)1d6f6305a65e2f7de2c7fbffbae83780
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)4ce42c81105c13e820996838fed24b31
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J PREV CARDIOL : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR J PREV CARDIOL : 2022
|d 2024-12-28
920 2 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 0 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21