000300692 001__ 300692
000300692 005__ 20250509113036.0
000300692 0247_ $$2doi$$a10.1093/nargab/lqaf042
000300692 0247_ $$2pmid$$apmid:40276039
000300692 0247_ $$2pmc$$apmc:PMC12019640
000300692 037__ $$aDKFZ-2025-00872
000300692 041__ $$aEnglish
000300692 082__ $$a570
000300692 1001_ $$00000-0002-5054-8635$$aGonzález-Velasco, Oscar$$b0
000300692 245__ $$aIdentifying similar populations across independent single cell studies without data integration.
000300692 260__ $$aOxford$$bOxford University Press$$c2025
000300692 3367_ $$2DRIVER$$aarticle
000300692 3367_ $$2DataCite$$aOutput Types/Journal article
000300692 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745841239_33
000300692 3367_ $$2BibTeX$$aARTICLE
000300692 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000300692 3367_ $$00$$2EndNote$$aJournal Article
000300692 500__ $$a#LA:B330#
000300692 520__ $$aSupervised and unsupervised methods have emerged to address the complexity of single cell data analysis in the context of large pools of independent studies. Here, we present ClusterFoldSimilarity (CFS), a novel statistical method design to quantify the similarity between cell groups across any number of independent datasets, without the need for data correction or integration. By bypassing these processes, CFS avoids the introduction of artifacts and loss of information, offering a simple, efficient, and scalable solution. This method match groups of cells that exhibit conserved phenotypes across datasets, including different tissues and species, and in a multimodal scenario, including single-cell RNA-Seq, ATAC-Seq, single-cell proteomics, or, more broadly, data exhibiting differential abundance effects among groups of cells. Additionally, CFS performs feature selection, obtaining cross-dataset markers of the similar phenotypes observed, providing an inherent interpretability of relationships between cell populations. To showcase the effectiveness of our methodology, we generated single-nuclei RNA-Seq data from the motor cortex and spinal cord of adult mice. By using CFS, we identified three distinct sub-populations of astrocytes conserved on both tissues. CFS includes various visualization methods for the interpretation of the similarity scores and similar cell populations.
000300692 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000300692 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000300692 650_2 $$2MeSH$$aSingle-Cell Analysis: methods
000300692 650_2 $$2MeSH$$aAnimals
000300692 650_2 $$2MeSH$$aMice
000300692 650_2 $$2MeSH$$aSpinal Cord: cytology
000300692 650_2 $$2MeSH$$aSpinal Cord: metabolism
000300692 650_2 $$2MeSH$$aMotor Cortex: cytology
000300692 650_2 $$2MeSH$$aMotor Cortex: metabolism
000300692 650_2 $$2MeSH$$aAstrocytes: metabolism
000300692 650_2 $$2MeSH$$aAstrocytes: cytology
000300692 650_2 $$2MeSH$$aRNA-Seq
000300692 650_2 $$2MeSH$$aCluster Analysis
000300692 7001_ $$aSimon, Malte$$b1
000300692 7001_ $$aYilmaz, Rüstem$$b2
000300692 7001_ $$aParlato, Rosanna$$b3
000300692 7001_ $$aWeishaupt, Jochen$$b4
000300692 7001_ $$aImbusch, Charles D$$b5
000300692 7001_ $$0P:(DE-He78)fc949170377b58098e46141d95c72661$$aBrors, Benedikt$$b6$$eLast author$$udkfz
000300692 773__ $$0PERI:(DE-600)3009998-5$$a10.1093/nargab/lqaf042$$gVol. 7, no. 2, p. lqaf042$$n2$$plqaf042$$tNAR: genomics and bioinformatics$$v7$$x2631-9268$$y2025
000300692 8767_ $$8SOA25LT003780$$92025-04-26$$d2025-05-08$$eAPC$$jZahlung erfolgt
000300692 909CO $$ooai:inrepo02.dkfz.de:300692$$pVDB$$pOpenAPC$$popenCost
000300692 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fc949170377b58098e46141d95c72661$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000300692 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000300692 9141_ $$y2025
000300692 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000300692 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000300692 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:37:58Z
000300692 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:37:58Z
000300692 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:37:58Z
000300692 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000300692 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2025-01-02
000300692 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000300692 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000300692 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000300692 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
000300692 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
000300692 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000300692 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000300692 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000300692 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000300692 9202_ $$0I:(DE-He78)B330-20160331$$kB330$$lAngewandte Bioinformatik$$x0
000300692 9201_ $$0I:(DE-He78)B330-20160331$$kB330$$lAngewandte Bioinformatik$$x0
000300692 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000300692 980__ $$ajournal
000300692 980__ $$aVDB
000300692 980__ $$aI:(DE-He78)B330-20160331
000300692 980__ $$aI:(DE-He78)HD01-20160331
000300692 980__ $$aUNRESTRICTED
000300692 980__ $$aAPC