000300711 001__ 300711
000300711 005__ 20250630102605.0
000300711 0247_ $$2doi$$a10.1002/mrm.30525
000300711 0247_ $$2pmid$$apmid:40294090
000300711 0247_ $$2ISSN$$a1522-2594
000300711 0247_ $$2ISSN$$a0740-3194
000300711 037__ $$aDKFZ-2025-00891
000300711 041__ $$aEnglish
000300711 082__ $$a610
000300711 1001_ $$aGallinnis, Patrik Jan$$b0
000300711 245__ $$aComparison of twelve-layer concentric object (TLCO) and Line segmentations methods to determine the renal corticomedullary sodium gradient (CMSG) with a 3 T MRI.
000300711 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2025
000300711 3367_ $$2DRIVER$$aarticle
000300711 3367_ $$2DataCite$$aOutput Types/Journal article
000300711 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751271924_20910
000300711 3367_ $$2BibTeX$$aARTICLE
000300711 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000300711 3367_ $$00$$2EndNote$$aJournal Article
000300711 500__ $$a2025 Sep;94(3):1318-1325
000300711 520__ $$a23Na MRI is a functional imaging technique that facilitates measurements of the renal corticomedullary sodium gradient (CMSG). The CMSG can be determined by a region of interest (ROI) in the renal parenchyma along the corticomedullary axis (Line method) or by dividing the renal parenchyma into concentric layers, using the twelve-layer concentric objects (TLCO) method. The aim of this study was to investigate the differences, strengths, and weaknesses in determining the CMSG using these methods.Ten healthy volunteers were examined on a 3 T MRI-system. 23Na images were acquired using a double-tuned 23Na/1H surface coil and a golden angle (GA) density-adapted 3D radial (DA-3D-RAD) sequence. The CMSG was determined with the Line and TLCO methods. Intra- and inter-reader analyses were performed by two radiologists.The evaluated CMSG by the two methods does not differ statistically significantly. Compared to the Line method, the TLCO method provides improved results in terms of reliability, precision, reproducibility, and concordance in intra- and inter-reader analyses. A CMSG of (6.7 ± 2.6) mM/mm was determined using the TLCO method in the segmentation process with the lowest standard deviation.The TLCO method shows superior performance in determining the CMSG compared to the Line method. Accordingly, the use of the TLCO method is recommended for future renal CMSG studies.
000300711 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000300711 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000300711 650_7 $$2Other$$acorticomedullary 23Na gradient
000300711 650_7 $$2Other$$akidney sodium MRI
000300711 650_7 $$2Other$$asodium MRI23Na MR imaging
000300711 650_7 $$2Other$$atwelve‐layer concentric objects (TLCO) method
000300711 7001_ $$aMöller, Rika$$b1
000300711 7001_ $$00000-0002-9748-9927$$aLjimani, Alexandra$$b2
000300711 7001_ $$aCabuk, Yusuf$$b3
000300711 7001_ $$aScheuer, Marie$$b4
000300711 7001_ $$aBöttger, Charlotte$$b5
000300711 7001_ $$aLiang, Cecilia$$b6
000300711 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b7$$udkfz
000300711 7001_ $$00000-0001-8864-4879$$aBechler, Eric$$b8
000300711 7001_ $$00000-0002-5830-423X$$aWittsack, Hans-Jörg$$b9
000300711 7001_ $$aMüller-Lutz, Anja$$b10
000300711 7001_ $$aKamp, Benedikt$$b11
000300711 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.30525$$gp. mrm.30525$$n3$$p1318-1325$$tMagnetic resonance in medicine$$v94$$x1522-2594$$y2025
000300711 909CO $$ooai:inrepo02.dkfz.de:300711$$pVDB
000300711 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000300711 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000300711 9141_ $$y2025
000300711 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
000300711 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-02$$wger
000300711 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000300711 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000300711 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000300711 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000300711 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000300711 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000300711 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000300711 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-02
000300711 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000300711 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000300711 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000300711 980__ $$ajournal
000300711 980__ $$aVDB
000300711 980__ $$aI:(DE-He78)E020-20160331
000300711 980__ $$aUNRESTRICTED