001     300744
005     20250504020356.0
024 7 _ |a 10.1007/s00299-025-03500-2
|2 doi
024 7 _ |a pmid:40299103
|2 pmid
024 7 _ |a pmc:PMC12040988
|2 pmc
024 7 _ |a 0721-7714
|2 ISSN
024 7 _ |a 1432-203X
|2 ISSN
024 7 _ |a altmetric:176596746
|2 altmetric
037 _ _ |a DKFZ-2025-00904
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Bodensohn, Uwe Sakamuzi
|0 0000-0002-4698-3757
|b 0
245 _ _ |a GET3B is involved in chloroplast biogenesis and interacts with the thylakoidal ALB3 and ALB4 insertases.
260 _ _ |a Heidelberg [u.a.]
|c 2025
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1746176083_33
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Proteomic, functional physiological analyses of get3b mutant plants highlight GET3B's role in chloroplast function. Genetic and interaction analyses indicate get3b and srp54 as mutual potentiators that might share terminal insertases. Protein targeting and insertion into membranes are essential for cellular organization and organelle function. The Guided Entry of Tail-anchored (GET) pathway facilitates the post-translational targeting and insertion of tail-anchored (TA) membrane proteins. Arabidopsis thaliana has four GET3 homologues, including AtGET3B and AtGET3D localized to chloroplasts. These photosynthetic organelles possess complex membrane systems, and the mechanisms underlying their protein targeting and membrane biogenesis are not fully understood. This study conducted a comprehensive proteomic analysis of get3b mutant plastids, which displayed significant alterations. Fluorometric based complex assembly as well as CO2 assimilation analyses confirmed that disruption of GET3B function displayed a significant impact on photosystem II assembly as well as carbon fixation, respectively, indicating a functional role in chloroplast biogenesis. Additionally, genetic interactions were found between GET3B and the two component STIC system, which cooperates with the cpSRP pathway which is involved in the co-translational sorting of thylakoid proteins. Further, physical interactions were observed between GET3B and the C-terminus of ALB3 and ALB4 in vitro and the full length proteins in vivo, indicating a role of GET3B in protein targeting and membrane integration within chloroplasts. These findings enhance our understanding of GET3B's involvement in stromal protein targeting and thylakoidal biogenesis.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a ALB3
|2 Other
650 _ 7 |a ALB4
|2 Other
650 _ 7 |a GET3B
|2 Other
650 _ 7 |a STIC1
|2 Other
650 _ 7 |a STIC2
|2 Other
650 _ 7 |a cpSRP54
|2 Other
650 _ 7 |a Arabidopsis Proteins
|2 NLM Chemicals
650 _ 7 |a ALBINO 3 protein, Arabidopsis
|2 NLM Chemicals
650 _ 7 |a Photosystem II Protein Complex
|2 NLM Chemicals
650 _ 2 |a Arabidopsis Proteins: metabolism
|2 MeSH
650 _ 2 |a Arabidopsis Proteins: genetics
|2 MeSH
650 _ 2 |a Arabidopsis: metabolism
|2 MeSH
650 _ 2 |a Arabidopsis: genetics
|2 MeSH
650 _ 2 |a Chloroplasts: metabolism
|2 MeSH
650 _ 2 |a Thylakoids: metabolism
|2 MeSH
650 _ 2 |a Photosystem II Protein Complex: metabolism
|2 MeSH
650 _ 2 |a Mutation
|2 MeSH
700 1 _ |a Dünschede, Beatrix
|b 1
700 1 _ |a Kuhlmann, Chiara
|b 2
700 1 _ |a Kumari, Khushbu
|b 3
700 1 _ |a Ladig, Roman
|0 P:(DE-He78)bec9e22241def5f294208ff58d0775da
|b 4
|u dkfz
700 1 _ |a Grefen, Christopher
|b 5
700 1 _ |a Schleiff, Enrico
|b 6
700 1 _ |a Fernandez, Donna
|b 7
700 1 _ |a Schünemann, Danja
|b 8
773 _ _ |a 10.1007/s00299-025-03500-2
|g Vol. 44, no. 5, p. 108
|0 PERI:(DE-600)1462082-0
|n 5
|p 108
|t Plant cell reports
|v 44
|y 2025
|x 0721-7714
909 C O |o oai:inrepo02.dkfz.de:300744
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)bec9e22241def5f294208ff58d0775da
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT CELL REP : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLANT CELL REP : 2022
|d 2025-01-07
920 1 _ |0 I:(DE-He78)B230-20160331
|k B230
|l B230 Proteomik von Stammzellen und Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B230-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21