000300748 001__ 300748
000300748 005__ 20250503112948.0
000300748 0247_ $$2doi$$a10.1186/s13058-025-02031-8
000300748 0247_ $$2pmid$$apmid:40312753
000300748 0247_ $$2ISSN$$a1465-5411
000300748 0247_ $$2ISSN$$a1465-542X
000300748 037__ $$aDKFZ-2025-00908
000300748 041__ $$aEnglish
000300748 082__ $$a610
000300748 1001_ $$aBrantley, Kristen D$$b0
000300748 245__ $$aDevelopment and validation of a risk prediction model for premenopausal breast cancer in 19 cohorts.
000300748 260__ $$aLondon$$bBioMed Central$$c2025
000300748 3367_ $$2DRIVER$$aarticle
000300748 3367_ $$2DataCite$$aOutput Types/Journal article
000300748 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1746193920_33
000300748 3367_ $$2BibTeX$$aARTICLE
000300748 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000300748 3367_ $$00$$2EndNote$$aJournal Article
000300748 520__ $$aIncidence of premenopausal breast cancer (BC) has risen in recent years, though most existing BC prediction models are not generalizable to young women due to underrepresentation of this age group in model development.Using questionnaire-based data from 19 prospective studies harmonized within the Premenopausal Breast Cancer Collaborative Group (PBCCG), representing 783,830 women, we developed a premenopausal BC risk prediction model. The data were split into training (2/3) and validation (1/3) datasets with equal distribution of cohorts in each. In the training dataset variables were chosen from known and hypothesized risk factors: age, age at menarche, age at first birth, parity, breastfeeding, height, BMI, young adulthood BMI, recent weight change, alcohol consumption, first-degree family history of BC, and personal history of benign breast disease (BBD). Hazard ratios (HR) and 95% confidence intervals (CI) were estimated by Cox proportional hazards regression using age as time scale, stratified by cohort. Given that complete information on all risk factors was not available in all cohorts, coefficients were estimated separately in groups of cohorts with the same available covariate information, adjusted to account for the correlation between missing and non-missing variables and meta-analyzed. Absolute risk of BC (in situ or invasive) within 5 years, was determined using country-, age-, and birth cohort-specific incidence rates. Discrimination (area under the curve, AUC) and calibration (Expected/Observed, E/O) were evaluated in the validation dataset. We compared our model with a literature-based model for women < 50 years (iCARE-Lit).Selected model risk factors were age at menarche, parity, height, current and young adulthood BMI, family history of BC, and personal BBD history. Predicted absolute 5-year risk ranged from 0% to 5.7%. The model overestimated risk on average [E/O risk = 1.18 (1.14-1.23)], with underestimation of risk in lower absolute risk deciles and overestimation in upper absolute risk deciles [E/O 1st decile = 0.59 (0.58-0.60); E/O 10th decile = 1.48 (1.48-1.49)]. The AUC was 59.1% (58.1-60.1%). Performance was similar to the iCARE-Lit model.In this prediction model for premenopausal BC, the relative contribution of risk factors to absolute risk was similar to existing models for overall BC. The discriminatory ability was nearly identical (< 1% difference in AUC) to the existing iCARE-Lit model developed in women under 50 years. The inability to improve discrimination highlights the need to investigate additional predictors to better understand premenopausal BC risk.
000300748 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000300748 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000300748 650_7 $$2Other$$aPremenopausal breast cancer
000300748 650_7 $$2Other$$aRisk prediction model
000300748 650_7 $$2Other$$aYoung-onset breast cancer
000300748 7001_ $$aJones, Michael E$$b1
000300748 7001_ $$aTamimi, Rulla M$$b2
000300748 7001_ $$aRosner, Bernard A$$b3
000300748 7001_ $$aKraft, Peter$$b4
000300748 7001_ $$aNichols, Hazel B$$b5
000300748 7001_ $$aO'Brien, Katie M$$b6
000300748 7001_ $$aAdami, Hans-Olov$$b7
000300748 7001_ $$aAizpurua, Amaia$$b8
000300748 7001_ $$ade Gonzalez, Amy Berrington$$b9
000300748 7001_ $$aBlot, William J$$b10
000300748 7001_ $$aBraaten, Tonje$$b11
000300748 7001_ $$aChen, Yu$$b12
000300748 7001_ $$aDeHart, Jessica Clague$$b13
000300748 7001_ $$aDossus, Laure$$b14
000300748 7001_ $$aElias, Sjoerd$$b15
000300748 7001_ $$0P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2$$aTurzanski-Fortner, Renée$$b16$$udkfz
000300748 7001_ $$aGarcia-Closas, Montserrat$$b17
000300748 7001_ $$aGram, Inger T$$b18
000300748 7001_ $$aHåkansson, Niclas$$b19
000300748 7001_ $$aHankinson, Susan E$$b20
000300748 7001_ $$aKitahara, Cari M$$b21
000300748 7001_ $$aKoh, Woon-Puay$$b22
000300748 7001_ $$aLinet, Martha S$$b23
000300748 7001_ $$aMacInnis, Robert J$$b24
000300748 7001_ $$aMasala, Giovanna$$b25
000300748 7001_ $$aMellemkjær, Lene$$b26
000300748 7001_ $$aMilne, Roger L$$b27
000300748 7001_ $$aMuller, David C$$b28
000300748 7001_ $$aPark, Hannah Lui$$b29
000300748 7001_ $$aRuddy, Kathryn J$$b30
000300748 7001_ $$aSandin, Sven$$b31
000300748 7001_ $$aShu, Xiao-Ou$$b32
000300748 7001_ $$aTin Tin, Sandar$$b33
000300748 7001_ $$aTruong, Thérèse$$b34
000300748 7001_ $$aVachon, Celine M$$b35
000300748 7001_ $$aVatten, Lars J$$b36
000300748 7001_ $$aVisvanathan, Kala$$b37
000300748 7001_ $$aWeiderpass, Elisabete$$b38
000300748 7001_ $$aWillett, Walter$$b39
000300748 7001_ $$aWolk, Alicja$$b40
000300748 7001_ $$aYuan, Jian-Min$$b41
000300748 7001_ $$aZheng, Wei$$b42
000300748 7001_ $$aSandler, Dale P$$b43
000300748 7001_ $$aSchoemaker, Minouk J$$b44
000300748 7001_ $$aSwerdlow, Anthony J$$b45
000300748 7001_ $$aEliassen, A Heather$$b46
000300748 773__ $$0PERI:(DE-600)2041618-0$$a10.1186/s13058-025-02031-8$$gVol. 27, no. 1, p. 67$$n1$$p67$$tBreast cancer research$$v27$$x1465-5411$$y2025
000300748 909CO $$ooai:inrepo02.dkfz.de:300748$$pVDB
000300748 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2$$aDeutsches Krebsforschungszentrum$$b16$$kDKFZ
000300748 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000300748 9141_ $$y2025
000300748 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBREAST CANCER RES : 2022$$d2024-12-05
000300748 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
000300748 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
000300748 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:36:03Z
000300748 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:36:03Z
000300748 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:36:03Z
000300748 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
000300748 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-05
000300748 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-05
000300748 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-05
000300748 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
000300748 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBREAST CANCER RES : 2022$$d2024-12-05
000300748 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-05
000300748 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-05
000300748 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebs$$x0
000300748 980__ $$ajournal
000300748 980__ $$aVDB
000300748 980__ $$aI:(DE-He78)C020-20160331
000300748 980__ $$aUNRESTRICTED