001     300814
005     20250508113029.0
020 _ _ |a 978-3-031-83273-4 (print)
020 _ _ |a 978-3-031-83274-1 (electronic)
024 7 _ |a 10.1007/978-3-031-83274-1_3
|2 doi
024 7 _ |a pmid:40291013
|2 pmid
024 7 _ |a pmc:PMC12023904
|2 pmc
024 7 _ |a 0302-9743
|2 ISSN
024 7 _ |a 1611-3349
|2 ISSN
037 _ _ |a DKFZ-2025-00928
041 _ _ |a English
100 1 _ |a Kächele, Jessica
|0 P:(DE-He78)05779b8fc2a612fdf8364db690f3480c
|b 0
|e First author
|u dkfz
245 _ _ |a Enhanced nnU-Net Architectures for Automated MRI Segmentation of Head and Neck Tumors in Adaptive Radiation Therapy.
260 _ _ |a Cham
|c 2025
|b Springer Nature Switzerland
295 1 0 |a Head and Neck Tumor Segmentation for MR-Guided Applications / Wahid, Kareem A. (Editor) [https://orcid.org/0000-0002-0503-0175] ; Cham : Springer Nature Switzerland, 2025, Chapter 3 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-031-83273-4=978-3-031-83274-1 ; doi:10.1007/978-3-031-83274-1
300 _ _ |a 50 - 64
336 7 _ |a BOOK_CHAPTER
|2 ORCID
336 7 _ |a Book Section
|0 7
|2 EndNote
336 7 _ |a bookPart
|2 DRIVER
336 7 _ |a INBOOK
|2 BibTeX
336 7 _ |a Output Types/Book chapter
|2 DataCite
336 7 _ |a Contribution to a book
|b contb
|m contb
|0 PUB:(DE-HGF)7
|s 1746695886_30
|2 PUB:(DE-HGF)
490 0 _ |a Lecture Notes in Computer Science
|v 15273
520 _ _ |a The increasing utilization of MRI in radiation therapy planning for head and neck cancer (HNC) highlights the need for precise tumor segmentation to enhance treatment efficacy and reduce side effects. This work presents segmentation models developed for the HNTS-MRG 2024 challenge by the team mic-dkfz, focusing on automated segmentation of HNC tumors from MRI images at two radiotherapy (RT) stages: before (pre-RT) and 2-4 weeks into RT (mid-RT). For Task 1 (pre-RT segmentation), we built upon the nnU-Net framework, enhancing it with the larger Residual Encoder architecture. We incorporated extensive data augmentation and applied transfer learning by pre-training the model on a diverse set of public 3D medical imaging datasets. For Task 2 (mid-RT segmentation), we adopted a longitudinal approach by integrating registered pre-RT images and their segmentations as additional inputs into the nnU-Net framework. On the test set, our models achieved mean aggregated Dice Similarity Coefficient (aggDSC) scores of 81.2 for Task 1 and 72.7 for Task 2. Especially the primary tumor (GTVp) segmentation is challenging and presents potential for further optimization. These results demonstrate the effectiveness of combining advanced architectures, transfer learning, and longitudinal data integration for automated tumor segmentation in MRI-guided adaptive radiation therapy.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Head and Neck Cancer
|2 Other
650 _ 7 |a Longitudinal Data Integration
|2 Other
650 _ 7 |a MRI-guided Radiation Therapy
|2 Other
650 _ 7 |a Transfer Learning
|2 Other
650 _ 7 |a Tumor Segmentation
|2 Other
650 _ 7 |a nnU-Net
|2 Other
700 1 _ |a Zenk, Maximilian
|0 P:(DE-He78)eafef5cb69dd3d85f1cc942c474a220f
|b 1
|u dkfz
700 1 _ |a Rokuss, Maximilian
|0 P:(DE-He78)936ebccdc011e3efd9ffc0bdcc2d8379
|b 2
|u dkfz
700 1 _ |a Ulrich, Constantin
|0 P:(DE-He78)1bf529d39d90e30ceb901da6e5816185
|b 3
|u dkfz
700 1 _ |a Wald, Tassilo
|0 P:(DE-He78)4412d586f86ca57943732a2b9318c44f
|b 4
|u dkfz
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 5
|e Last author
|u dkfz
773 _ _ |a 10.1007/978-3-031-83274-1_3
909 C O |o oai:inrepo02.dkfz.de:300814
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)05779b8fc2a612fdf8364db690f3480c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)eafef5cb69dd3d85f1cc942c474a220f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)936ebccdc011e3efd9ffc0bdcc2d8379
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)1bf529d39d90e30ceb901da6e5816185
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)4412d586f86ca57943732a2b9318c44f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
980 _ _ |a contb
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21