001     300827
005     20250509113037.0
024 7 _ |a 10.3389/fimmu.2025.1568056
|2 doi
024 7 _ |a pmid:40330464
|2 pmid
024 7 _ |a pmc:PMC12054253
|2 pmc
037 _ _ |a DKFZ-2025-00941
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Li, Teng-Feng
|b 0
245 _ _ |a RBM39 shapes innate immunity by controlling the expression of key factors of the interferon response.
260 _ _ |a Lausanne
|c 2025
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1746708329_30
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The contribution of innate immunity to clearance of viral infections of the liver, in particular sensing via Toll-like receptor 3 (TLR3), is incompletely understood. We aimed to identify the factors contributing to the TLR3 response in hepatocytes via CRISPR/Cas9 screening.A genome-wide CRISPR/Cas9 screen on the TLR3 pathway was performed in two liver-derived cell lines, followed by siRNA knockdown validation. SiRNA knockdown and indisulam treatment were used to study the role of RNA-binding motif protein 39 (RBM39) in innate immunity upon poly(I:C) or cytokine treatment and viral infections. Transcriptome, proteome, and alternative splicing were studied via RNA sequencing and mass spectrometry upon depletion of RBM39.Our CRISPR/Cas9 screen identified RBM39, which is highly expressed in hepatocytes, as an important regulator of the TLR3 pathway. Knockdown of RBM39 or treatment with indisulam, an aryl sulfonamide drug targeting RBM39 for proteasomal degradation, strongly reduced the induction of interferon-stimulated genes (ISGs) in response to double-stranded RNA (dsRNA) or viral infections. RNA sequencing (seq) and mass spectrometry identified that transcription and/or splicing of the key pathway components IRF3, RIG-I, and MDA5 were affected by RBM39 depletion, along with multiple other cellular processes identified previously. RBM39 knockdown further restrained type I and type III IFN pathways by reducing the expression of individual receptor subunits and STAT1/2. The function of RBM39 was furthermore not restricted to hepatocytes.We identified RBM39 as a regulatory factor of cell intrinsic innate immune signaling. Depletion of RBM39 impaired TLR3, RIG-I/MDA5, and IFN responses by affecting the basal expression of key pathway components.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a IFNs
|2 Other
650 _ 7 |a IRF3
|2 Other
650 _ 7 |a RBM39
|2 Other
650 _ 7 |a STAT1
|2 Other
650 _ 7 |a STAT2
|2 Other
650 _ 7 |a splicing
|2 Other
650 _ 7 |a RNA-Binding Proteins
|2 NLM Chemicals
650 _ 7 |a Toll-Like Receptor 3
|2 NLM Chemicals
650 _ 7 |a Interferons
|0 9008-11-1
|2 NLM Chemicals
650 _ 7 |a TLR3 protein, human
|2 NLM Chemicals
650 _ 2 |a RNA-Binding Proteins: genetics
|2 MeSH
650 _ 2 |a RNA-Binding Proteins: metabolism
|2 MeSH
650 _ 2 |a RNA-Binding Proteins: immunology
|2 MeSH
650 _ 2 |a Immunity, Innate: genetics
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Toll-Like Receptor 3: metabolism
|2 MeSH
650 _ 2 |a Toll-Like Receptor 3: genetics
|2 MeSH
650 _ 2 |a Toll-Like Receptor 3: immunology
|2 MeSH
650 _ 2 |a Hepatocytes: immunology
|2 MeSH
650 _ 2 |a Hepatocytes: metabolism
|2 MeSH
650 _ 2 |a Signal Transduction
|2 MeSH
650 _ 2 |a Interferons: immunology
|2 MeSH
650 _ 2 |a Interferons: metabolism
|2 MeSH
650 _ 2 |a Gene Expression Regulation
|2 MeSH
650 _ 2 |a CRISPR-Cas Systems
|2 MeSH
650 _ 2 |a Cell Line
|2 MeSH
700 1 _ |a Rothhaar, Paul
|b 1
700 1 _ |a Lang, Arthur
|b 2
700 1 _ |a Grünvogel, Oliver
|b 3
700 1 _ |a Colasanti, Ombretta
|b 4
700 1 _ |a Ugarte, Santa Mariela Olivera
|b 5
700 1 _ |a Traut, Jannik
|b 6
700 1 _ |a Piras, Antonio
|b 7
700 1 _ |a Acosta-Rivero, Nelson
|b 8
700 1 _ |a Gonçalves Magalhães, Vladimir
|0 P:(DE-He78)857fdd8f2ba2671be28c46a8c836dd42
|b 9
|u dkfz
700 1 _ |a Springer, Emely
|b 10
700 1 _ |a Betz, Andreas
|b 11
700 1 _ |a Huang, Hao-En
|b 12
700 1 _ |a Park, Jeongbin
|0 P:(DE-He78)92e094eac4fff11dc500bf29667bbc8e
|b 13
700 1 _ |a Qiu, Ruiyue
|b 14
700 1 _ |a Gnouamozi, Gnimah Eva
|b 15
700 1 _ |a Mehnert, Ann-Kathrin
|b 16
700 1 _ |a Thi, Viet Loan Dao
|b 17
700 1 _ |a Urban, Stephan
|b 18
700 1 _ |a Muckenthaler, Martina
|b 19
700 1 _ |a Schlesner, Matthias
|0 P:(DE-He78)f2a782242acf94a3114d75c45dc75b37
|b 20
|u dkfz
700 1 _ |a Wohlleber, Dirk
|b 21
700 1 _ |a Binder, Marco
|0 P:(DE-He78)2fb2bd9048a3777dddc4cb89b115c187
|b 22
|u dkfz
700 1 _ |a Bartenschlager, Ralf
|0 P:(DE-He78)1d3968d2f0ff3eae55f6b2ea4c474387
|b 23
|u dkfz
700 1 _ |a Pichlmair, Andreas
|b 24
700 1 _ |a Lohmann, Volker
|b 25
773 _ _ |a 10.3389/fimmu.2025.1568056
|g Vol. 16, p. 1568056
|0 PERI:(DE-600)2606827-8
|p 1568056
|t Frontiers in immunology
|v 16
|y 2025
|x 1664-3224
909 C O |o oai:inrepo02.dkfz.de:300827
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)857fdd8f2ba2671be28c46a8c836dd42
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)92e094eac4fff11dc500bf29667bbc8e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)f2a782242acf94a3114d75c45dc75b37
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 22
|6 P:(DE-He78)2fb2bd9048a3777dddc4cb89b115c187
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 23
|6 P:(DE-He78)1d3968d2f0ff3eae55f6b2ea4c474387
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT IMMUNOL : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-12-29T15:23:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-12-29T15:23:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-12-29T15:23:07Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2023-12-29T15:23:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FRONT IMMUNOL : 2022
|d 2024-12-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-28
920 1 _ |0 I:(DE-He78)D430-20160331
|k D430
|l Virus-assoziierte Karzinogenese
|x 0
920 1 _ |0 I:(DE-He78)W610-20160331
|k W610
|l Core Facility Omics IT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D430-20160331
980 _ _ |a I:(DE-He78)W610-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21