001     301270
005     20250803021806.0
024 7 _ |a 10.1007/s11548-025-03370-9
|2 doi
024 7 _ |a pmid:40343639
|2 pmid
024 7 _ |a 1861-6410
|2 ISSN
024 7 _ |a 1861-6429
|2 ISSN
024 7 _ |a altmetric:178328022
|2 altmetric
037 _ _ |a DKFZ-2025-00955
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Knopp, Marcel
|0 P:(DE-He78)494ff43d7941675bb715dbe497f23f22
|b 0
|e First author
|u dkfz
245 _ _ |a Shortcut learning leads to sex bias in deep learning models for photoacoustic tomography.
260 _ _ |a Heidelberg [u.a.]
|c 2025
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753779007_3430
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E130#LA:E130# / 2025 Jul;20(7):1325-1333
520 _ _ |a Shortcut learning has been identified as a source of algorithmic unfairness in medical imaging artificial intelligence (AI), but its impact on photoacoustic tomography (PAT), particularly concerning sex bias, remains underexplored. This study investigates this issue using peripheral artery disease (PAD) diagnosis as a specific clinical application.To examine the potential for sex bias due to shortcut learning in convolutional neural network (CNNs) and assess how such biases might affect diagnostic predictions, we created training and test datasets with varying PAD prevalence between sexes. Using these datasets, we explored (1) whether CNNs can classify the sex from imaging data, (2) how sex-specific prevalence shifts impact PAD diagnosis performance and underdiagnosis disparity between sexes, and (3) how similarly CNNs encode sex and PAD features.Our study with 147 individuals demonstrates that CNNs can classify the sex from calf muscle PAT images, achieving an AUROC of 0.75. For PAD diagnosis, models trained on data with imbalanced sex-specific disease prevalence experienced significant performance drops (up to 0.21 AUROC) when applied to balanced test sets. Additionally, greater imbalances in sex-specific prevalence within the training data exacerbated underdiagnosis disparities between sexes. Finally, we identify evidence of shortcut learning by demonstrating the effective reuse of learned feature representations between PAD diagnosis and sex classification tasks.CNN-based models trained on PAT data may engage in shortcut learning by leveraging sex-related features, leading to biased and unreliable diagnostic predictions. Addressing demographic-specific prevalence imbalances and preventing shortcut learning is critical for developing models in the medical field that are both accurate and equitable across diverse patient populations.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Peripheral artery disease (PAD)
|2 Other
650 _ 7 |a Photoacoustic tomography (PAT)
|2 Other
650 _ 7 |a Sex Bias in AI
|2 Other
650 _ 7 |a Shortcut learning
|2 Other
700 1 _ |a Bender, Christoph Julien
|0 P:(DE-He78)d9c9ea92e3b697685f4b4c3bd6d063ad
|b 1
|e First author
|u dkfz
700 1 _ |a Holzwarth, Niklas
|0 P:(DE-He78)1c47bf7bdef42ec57b194723ccfb2946
|b 2
|u dkfz
700 1 _ |a Li, Yi
|b 3
700 1 _ |a Kempf, Julius
|b 4
700 1 _ |a Caranovic, Milenko
|b 5
700 1 _ |a Knieling, Ferdinand
|0 0000-0002-3535-2626
|b 6
700 1 _ |a Lang, Werner
|0 0000-0003-4114-7589
|b 7
700 1 _ |a Rother, Ulrich
|0 0000-0002-4016-5673
|b 8
700 1 _ |a Seitel, Alexander
|0 P:(DE-He78)a83df473f58a6a8ef43263ec9783ecf0
|b 9
|e Last author
|u dkfz
700 1 _ |a Maier-Hein, Lena
|0 P:(DE-He78)26a1176cd8450660333a012075050072
|b 10
|e Last author
|u dkfz
700 1 _ |a Dreher, Kris
|0 P:(DE-He78)84acbc6406dd178828f87a8150d40951
|b 11
|e Last author
|u dkfz
773 _ _ |a 10.1007/s11548-025-03370-9
|0 PERI:(DE-600)2235881-X
|n 7
|p 1325-1333
|t International journal of computer assisted radiology and surgery
|v 20
|y 2025
|x 1861-6410
909 C O |p VDB
|o oai:inrepo02.dkfz.de:301270
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)494ff43d7941675bb715dbe497f23f22
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)d9c9ea92e3b697685f4b4c3bd6d063ad
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)1c47bf7bdef42ec57b194723ccfb2946
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)a83df473f58a6a8ef43263ec9783ecf0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)26a1176cd8450660333a012075050072
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)84acbc6406dd178828f87a8150d40951
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J COMPUT ASS RAD : 2022
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
920 2 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
920 1 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
920 0 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E130-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21