000301282 001__ 301282
000301282 005__ 20250518020557.0
000301282 0247_ $$2doi$$a10.1038/s41467-025-59067-9
000301282 0247_ $$2pmid$$apmid:40348781
000301282 0247_ $$2altmetric$$aaltmetric:177016283
000301282 037__ $$aDKFZ-2025-00967
000301282 041__ $$aEnglish
000301282 082__ $$a500
000301282 1001_ $$aGalmozzi, Carla Verónica$$b0
000301282 245__ $$aProteome-wide determinants of co-translational chaperone binding in bacteria.
000301282 260__ $$a[London]$$bSpringer Nature$$c2025
000301282 3367_ $$2DRIVER$$aarticle
000301282 3367_ $$2DataCite$$aOutput Types/Journal article
000301282 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1747132636_13898
000301282 3367_ $$2BibTeX$$aARTICLE
000301282 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000301282 3367_ $$00$$2EndNote$$aJournal Article
000301282 500__ $$aDKFZ-ZMBH Alliance / #LA:Z999#
000301282 520__ $$aChaperones are essential to the co-translational folding of most proteins. However, the principles of co-translational chaperone interaction throughout the proteome are poorly understood, as current methods are restricted to few substrates and cannot capture nascent protein folding or chaperone binding sites, precluding a comprehensive understanding of productive and erroneous protein biosynthesis. Here, by integrating genome-wide selective ribosome profiling, single-molecule tools, and computational predictions using AlphaFold we show that the binding of the main E. coli chaperones involved in co-translational folding, Trigger Factor (TF) and DnaK correlates with 'unsatisfied residues' exposed on nascent partial folds - residues that have begun to form tertiary structure but cannot yet form all native contacts due to ongoing translation. This general principle allows us to predict their co-translational binding across the proteome based on sequence only, which we verify experimentally. The results show that TF and DnaK stably bind partially folded rather than unfolded conformers. They also indicate a synergistic action of TF guiding intra-domain folding and DnaK preventing premature inter-domain contacts, and reveal robustness in the larger chaperone network (TF, DnaK, GroEL). Given the complexity of translation, folding, and chaperone functions, our predictions based on general chaperone binding rules indicate an unexpected underlying simplicity.
000301282 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000301282 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000301282 650_7 $$2NLM Chemicals$$aEscherichia coli Proteins
000301282 650_7 $$2NLM Chemicals$$aProteome
000301282 650_7 $$0EC 3.6.1.-$$2NLM Chemicals$$adnaK protein, E coli
000301282 650_7 $$0EC 5.2.1.-$$2NLM Chemicals$$atrigger factor, E coli
000301282 650_7 $$2NLM Chemicals$$aHSP70 Heat-Shock Proteins
000301282 650_7 $$2NLM Chemicals$$aMolecular Chaperones
000301282 650_7 $$0EC 5.2.1.8$$2NLM Chemicals$$aPeptidylprolyl Isomerase
000301282 650_2 $$2MeSH$$aEscherichia coli Proteins: metabolism
000301282 650_2 $$2MeSH$$aEscherichia coli Proteins: genetics
000301282 650_2 $$2MeSH$$aEscherichia coli Proteins: chemistry
000301282 650_2 $$2MeSH$$aProteome: metabolism
000301282 650_2 $$2MeSH$$aProteome: genetics
000301282 650_2 $$2MeSH$$aEscherichia coli: metabolism
000301282 650_2 $$2MeSH$$aEscherichia coli: genetics
000301282 650_2 $$2MeSH$$aProtein Folding
000301282 650_2 $$2MeSH$$aHSP70 Heat-Shock Proteins: metabolism
000301282 650_2 $$2MeSH$$aHSP70 Heat-Shock Proteins: genetics
000301282 650_2 $$2MeSH$$aHSP70 Heat-Shock Proteins: chemistry
000301282 650_2 $$2MeSH$$aProtein Binding
000301282 650_2 $$2MeSH$$aMolecular Chaperones: metabolism
000301282 650_2 $$2MeSH$$aMolecular Chaperones: genetics
000301282 650_2 $$2MeSH$$aProtein Biosynthesis
000301282 650_2 $$2MeSH$$aRibosomes: metabolism
000301282 650_2 $$2MeSH$$aPeptidylprolyl Isomerase: metabolism
000301282 650_2 $$2MeSH$$aPeptidylprolyl Isomerase: genetics
000301282 650_2 $$2MeSH$$aBinding Sites
000301282 7001_ $$aTippmann, Frank$$b1
000301282 7001_ $$aWruck, Florian$$b2
000301282 7001_ $$aAuburger, Josef Johannes$$b3
000301282 7001_ $$0P:(DE-He78)0c219dbc36bb1df7df258d866ef48a80$$aKats, Ilia$$b4$$udkfz
000301282 7001_ $$00000-0002-0242-2798$$aGuennigmann, Manuel$$b5
000301282 7001_ $$aTill, Katharina$$b6
000301282 7001_ $$00000-0001-9809-3273$$aO Brien, Edward P$$b7
000301282 7001_ $$aTans, Sander J$$b8
000301282 7001_ $$aKramer, Günter$$b9
000301282 7001_ $$0P:(DE-He78)9d539bc25fa8f4ff093b6f6e10d39476$$aBukau, Bernd$$b10$$udkfz
000301282 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-025-59067-9$$gVol. 16, no. 1, p. 4361$$n1$$p4361$$tNature Communications$$v16$$x2041-1723$$y2025
000301282 909CO $$ooai:inrepo02.dkfz.de:301282$$pVDB
000301282 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0c219dbc36bb1df7df258d866ef48a80$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000301282 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9d539bc25fa8f4ff093b6f6e10d39476$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000301282 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000301282 9141_ $$y2025
000301282 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
000301282 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000301282 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000301282 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
000301282 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
000301282 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
000301282 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-01-30T07:48:07Z
000301282 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000301282 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
000301282 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
000301282 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
000301282 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000301282 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000301282 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000301282 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000301282 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000301282 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000301282 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
000301282 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
000301282 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
000301282 9201_ $$0I:(DE-He78)B260-20160331$$kB260$$lB260 Bioinformatik der Genomik und Systemgenetik$$x0
000301282 980__ $$ajournal
000301282 980__ $$aVDB
000301282 980__ $$aI:(DE-He78)B260-20160331
000301282 980__ $$aUNRESTRICTED