| Home > Publications database > Exploring metabolomics for colorectal cancer risk prediction: evidence from the UK Biobank and ESTHER cohorts. > print |
| 001 | 301323 | ||
| 005 | 20251002115235.0 | ||
| 024 | 7 | _ | |a 10.1186/s12916-025-04107-w |2 doi |
| 024 | 7 | _ | |a pmid:40361100 |2 pmid |
| 037 | _ | _ | |a DKFZ-2025-00995 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Seum, Teresa |0 P:(DE-He78)cfc349d742aee6cc3394ccaa1ef6494f |b 0 |e First author |u dkfz |
| 245 | _ | _ | |a Exploring metabolomics for colorectal cancer risk prediction: evidence from the UK Biobank and ESTHER cohorts. |
| 260 | _ | _ | |a London |c 2025 |b BioMed Central |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1747316956_1545 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a #EA:C070#LA:C070# |
| 520 | _ | _ | |a While metabolic pathway alterations are linked to colorectal cancer (CRC), the predictive value of pre-diagnostic metabolomic profiling in CRC risk assessment remains to be clarified. This study evaluated the predictive performance of a metabolomics risk panel (MRP) both independently and in combination with established risk factors.We derived, internally validated (IV), and externally validated (EV) a metabolomics risk panel (MRP) for CRC from data of the UK Biobank (UKB) and the German ESTHER cohort. Baseline blood samples were assessed for 249 metabolites using nuclear magnetic resonance spectroscopy analysis. We applied LASSO Cox proportional hazards regression to identify metabolites for inclusion in the MRP and evaluated the model performance using the concordance index (C-index). We compared the performance of the MRP to an environmental risk panel (ERP; sex, age, body mass index, smoking status, and alcohol consumption) and a genetic risk panel (GRP; polygenic risk score).The study included 154,892 participants of the UKB cohort (mean age at baseline 54.5 years; 55.5% female) with 1879 incident CRC and 3242 participants of the ESTHER cohort (mean age 61.5 years; 52.2% female) with 103 CRC cases. Twenty-three metabolites, primarily amino acid and lipid-related metabolites, were selected for the MRP, showing moderate predictive performance (C-index 0.60 [IV] and 0.54 [EV]). The ERP and GRP showed superior performance, with C-index values of 0.73 (IV) and 0.69 (EV). Adding the MRP to these risk models did not change the C-indices in both cohorts.Genetic and environmental risk information provided strong predictive accuracy for CRC risk, with no improvements from adding metabolomics data. These findings suggest that metabolomics data may have limited impact on enhancing established CRC risk models in clinical practice. |
| 536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
| 650 | _ | 7 | |a Biomarkers |2 Other |
| 650 | _ | 7 | |a Colorectal cancer |2 Other |
| 650 | _ | 7 | |a Metabolomics |2 Other |
| 650 | _ | 7 | |a Risk stratification |2 Other |
| 650 | _ | 2 | |a Humans |2 MeSH |
| 650 | _ | 2 | |a Colorectal Neoplasms: metabolism |2 MeSH |
| 650 | _ | 2 | |a Colorectal Neoplasms: epidemiology |2 MeSH |
| 650 | _ | 2 | |a Colorectal Neoplasms: diagnosis |2 MeSH |
| 650 | _ | 2 | |a Colorectal Neoplasms: genetics |2 MeSH |
| 650 | _ | 2 | |a Male |2 MeSH |
| 650 | _ | 2 | |a Female |2 MeSH |
| 650 | _ | 2 | |a Middle Aged |2 MeSH |
| 650 | _ | 2 | |a Metabolomics: methods |2 MeSH |
| 650 | _ | 2 | |a United Kingdom: epidemiology |2 MeSH |
| 650 | _ | 2 | |a Risk Assessment: methods |2 MeSH |
| 650 | _ | 2 | |a Biological Specimen Banks |2 MeSH |
| 650 | _ | 2 | |a Aged |2 MeSH |
| 650 | _ | 2 | |a Risk Factors |2 MeSH |
| 650 | _ | 2 | |a Cohort Studies |2 MeSH |
| 650 | _ | 2 | |a UK Biobank |2 MeSH |
| 700 | 1 | _ | |a Cardoso, Rafael |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Stevenson-Hoare, Joshua |0 P:(DE-He78)9976da2c4ac21202b44584c21d8404e7 |b 2 |u dkfz |
| 700 | 1 | _ | |a Holleczek, Bernd |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Schöttker, Ben |0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46 |b 4 |u dkfz |
| 700 | 1 | _ | |a Hoffmeister, Michael |0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |b 5 |u dkfz |
| 700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 6 |e Last author |u dkfz |
| 773 | _ | _ | |a 10.1186/s12916-025-04107-w |g Vol. 23, no. 1, p. 283 |0 PERI:(DE-600)2131669-7 |n 1 |p 283 |t BMC medicine |v 23 |y 2025 |x 1741-7015 |
| 909 | C | O | |o oai:inrepo02.dkfz.de:301323 |p VDB |p OpenAPC |p openCost |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)cfc349d742aee6cc3394ccaa1ef6494f |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)9976da2c4ac21202b44584c21d8404e7 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BMC MED : 2022 |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-10T15:34:47Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-10T15:34:47Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Open peer review |d 2024-04-10T15:34:47Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-05 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2024-12-05 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-05 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b BMC MED : 2022 |d 2024-12-05 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-05 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-05 |
| 915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
| 915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
| 915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
| 915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
| 920 | 2 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie der Krebsfrüherkennung |x 0 |
| 920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie der Krebsfrüherkennung |x 0 |
| 920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 1 |
| 920 | 0 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie der Krebsfrüherkennung |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-He78)C070-20160331 |
| 980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a APC |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|