001     301485
005     20250624160110.0
024 7 _ |a 10.1016/j.cbi.2025.111563
|2 doi
024 7 _ |a pmid:40383470
|2 pmid
024 7 _ |a 0009-2797
|2 ISSN
024 7 _ |a 1872-7786
|2 ISSN
024 7 _ |a altmetric:177337946
|2 altmetric
037 _ _ |a DKFZ-2025-01027
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Varol, Ayşegül
|b 0
245 _ _ |a Comprehensive Transcriptomic Analysis in Wild-type and ATM Knockout Lung Cancer Cells: Influence of Cisplatin on Oxidative Stress-Induced Senescence.
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1750773640_16792
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Volume 418, 5 September 2025, 111563
520 _ _ |a Genetic mutations and impaired DNA repair mechanisms in cancer not only facilitate tumor progression but also reduce the effectiveness of chemotherapeutic agents, particularly cisplatin. Combination therapy has emerged as a promising strategy to overcome resistance. Comprehensive transcriptomic analyses, supported by integrated comparative bioinformatics and experimental approaches, are essential for identifying biomarkers and novel therapeutic targets underlying drug resistance. In this study, we performed overall survival and mutation analyses, examining 23 double-strand break repair proteins across more than 7,500 tumors spanning 23 distinct cancer types. Our findings identify ATM (ataxia-telangiectasia mutated) as a key protein with the highest mutation frequency. Using CRISPR/Cas9, we investigated the effects of ATM mutations on signalling pathways that influence the cellular response to cisplatin. ATM knockout enhanced cisplatin cytotoxicity by activating alternative cell death pathways, including oxidative stress-induced senescence and necroptosis. Microarray analysis revealed a regulatory interplay between ATM and NRF2 in the activation of oxidative stress-induced senescence. Specifically, ATM knockoutpromoted senescence by increasing reactive oxygen species (ROS) accumulation and downregulating NRF2 expression. To enhance combination therapy, integrating genetic profiling with advanced tools such as CRISPR/Cas9 to target oxidative stress-induced senescence may provide innovative strategies to overcome drug resistance, thereby advancing personalized cancer treatment. These approaches lay the foundation for the development of personalized cancer therapies tailored to the unique mutational landscape of individual patients, offering promising prospects for improving treatment outcomes.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Chemotherapy resistance
|2 Other
650 _ 7 |a Personalized cancer therapy
|2 Other
650 _ 7 |a Prognostic biomarkers Signal transduction
|2 Other
650 _ 7 |a Survival analysis
|2 Other
650 _ 7 |a Transcriptomics
|2 Other
700 1 _ |a Klauck, Sabine M
|0 P:(DE-He78)514f8ac681adb9f76d5de4b07ccd143b
|b 1
|u dkfz
700 1 _ |a Lees-Miller, Susan P
|b 2
700 1 _ |a Efferth, Thomas
|b 3
773 _ _ |a 10.1016/j.cbi.2025.111563
|g p. 111563 -
|0 PERI:(DE-600)1496834-4
|p 111563
|t Chemico-biological interactions
|v 418
|y 2025
|x 0009-2797
909 C O |p VDB
|o oai:inrepo02.dkfz.de:301485
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)514f8ac681adb9f76d5de4b07ccd143b
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM-BIOL INTERACT : 2022
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM-BIOL INTERACT : 2022
|d 2024-12-05
920 1 _ |0 I:(DE-He78)B063-20160331
|k B063
|l B063 Krebsgenomforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B063-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21